module Game-CoreInf where
-- in which we formalise the fundamentals of Game Semantics in Agda
-- but an infinitary version!
open import Data.Empty
open import Data.Unit
open import Data.Maybe
open import Data.Sum
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
open import Coinduction
open import Data.Nat renaming (_+_ to _+'_)
-- Games
-- At each level of the game, we have a set of possible moves. For
-- cardinality reasons, it is useful to restrict that set to one of
-- the following forms:
infixr 8 _⊹_
data MovEnc : Set where
nil : MovEnc
one : MovEnc
_⊹_ : MovEnc → MovEnc → MovEnc
ℕ× : MovEnc → MovEnc
-- where each constructor represents a set in the following manner:
T : MovEnc → Set
T nil = ⊥
T one = ⊤
T (x ⊹ y) = T x ⊎ T y
T (ℕ× m) = ℕ × T m
-- So a game consists of an (encoded) set of moves, and for each move
-- a corresponding (delayed) "rest of the game":
data Game : Set where
gam : {ι : MovEnc} → (T ι → ∞ Game) → Game
mvEnc : Game → MovEnc
mvEnc (gam {a} f) = a
Mov : Game → Set
Mov G = T (mvEnc G)
infix 10 _▸_
_▸_ : (G : Game) → Mov G → Game
(gam {ι} f) ▸ x = ♭ (f x)
-- Constructions on Games
I : Game
I = gam {nil} ⊥-elim
_×'_ : Game → Game → Game
gam {i} f ×' gam {j} g = gam {i ⊹ j} ([ f , g ])
infix 14 _⊗_
infix 12 _⊸_ _⊸̂_
mutual
_⊸_ : Game → Game → Game
G ⊸ (gam {i} f) = gam {i} (λ i' → ♯ (♭ (f i') ⊗ G))
_⊗_ : Game → Game → Game
(gam {i} f) ⊗ (gam {j} g) = gam {i ⊹ j} h
where h : T (i ⊹ j) → ∞ Game
h (inj₁ x) = ♯ (gam {j} g ⊸ ♭ (f x))
h (inj₂ y) = ♯ (gam {i} f ⊸ ♭ (g y))
_⊘_ : Game → Game → Game
(gam {i} f) ⊘ G = gam {i} (λ i' → ♯ (G ⊸ (♭ $ f i')))
o : Game
o = gam {one} (λ _ → ♯ I)
bangΣ : Game
bangΣ = gam {one} (λ _ → ♯ bangΣ)
_⊸o : Game → Game
G ⊸o = gam {one} (λ tt → ♯ G)
ω× : Game → Game
ω× (gam {i} f) = gam {ℕ× i} (λ x → ♯ (♭ $ f (proj₂ x)))
-- ⊸̂ represents a strict function space:
_⊸̂_ : Game → Game → Game
G ⊸̂ (gam {i} f) = gam {i} (λ i' → ♯ (G ⊘ ♭ (f i')))
-- Exponential
-- bang G = G ⊘ bang G
data GameP : Set where
gam : {ι : MovEnc} → (T ι → ∞ GameP) → GameP
_⊸P_ : GameP → GameP → GameP
_⊗P_ : GameP → GameP → GameP
data GameH : Set where
gam : {ι : MovEnc} → (T ι → ∞ GameP) → GameH
HtoP : GameH → GameP
HtoP (gam {i} y) = gam {i} y
GtoP : Game → GameP
GtoP (gam {i} y) = gam {i} (λ x → ♯ (GtoP (♭ (y x))))
whnf : GameP → GameH
whnf (gam {i} y) = gam {i} y
whnf (y ⊸P y') = (whnf y) ⊸' (whnf y')
where _⊸'_ : GameH → GameH → GameH
G ⊸' gam {i} y = gam {i} (λ x → ♯ (♭ (y x) ⊗P (HtoP G)))
whnf (y ⊗P y') = (whnf y) ⊗' (whnf y')
where _⊗'_ : GameH → GameH → GameH
gam {i} z ⊗' gam {j} y = gam {i ⊹ j} [ (λ zi → ♯ ((gam {j} y) ⊸P (♭ (z zi)))) ,
(λ zi → ♯ ((gam {i} z) ⊸P (♭ (y zi)))) ]
mutual
HtoG : GameH → Game
HtoG (gam {i} y) = gam {i} (λ x → ♯ (PtoG (♭ (y x))))
PtoG : GameP → Game
PtoG g = HtoG (whnf g)
bangP : Game → GameP
bangP (gam {i} f) = gam {i} (λ x → ♯ (bangP (gam {i} f) ⊸P GtoP (♭ (f x))))
bang : Game → Game
bang g = PtoG $ bangP g
-- Strategies
{-
open import Data.Bool public
renaming (true to - ; false to +;
Bool to Pol; not to ¬;
T to IsTrue)
open import Category.Monad.Partiality as P
open import Category.Functor
open import Category.Monad
open RawMonad P.monad using (_<$>_)
data Strat : Pol → Game → Set where
pos : ∀ {G} → _⊥ (Σ (Mov G) (λ i → ∞ (Strat - (G ▸ i)))) → Strat + G
neg : ∀ {G} → ((i : Mov G) → ∞ (Strat + (G ▸ i))) → Strat - G
swp' : ∀ {B} {C} → (Σ (T (mvEnc (C ⊗ B))) (λ i → ∞ (Strat - (C ⊗ B ▸ i))) →
Σ (T (mvEnc (B ⊗ C))) (λ i → ∞ (Strat - (B ⊗ C ▸ i))))
swp' {gam f} {gam g} (inj₁ x , y') = inj₂ x , y'
swp' {gam f} {gam g} (inj₂ y' , y0) = inj₁ y' , y0
swp : ∀ {B C} → Strat + (C ⊗ B) → Strat + (B ⊗ C)
swp {B} {C} (pos y) = pos (swp' {B} {C} <$> y)
unpos : ∀ {G} → Strat + G → _⊥ (Σ (Mov G) (λ i → ∞ (Strat - (G ▸ i))))
unpos (pos y) = y
{-mutual
_∙₁_ : ∀ {A B C} → Strat - (A ⊸ B) → Strat - (B ⊸ C) → Strat - (A ⊸ C)
_∙₁_ {gam a} {gam b} {gam c} σ (neg g) = neg (λ c' → σ ∙₂ (g c'))
_∙₂_ : ∀ {A B C} → Strat - (A ⊸ B) → Strat + (C ⊗ B) → Strat + (C ⊗ A)
_∙₂_ {gam a} {gam b} {gam c} σ (pos (inj₁ c') g) = pos (inj₁ c') (σ ∙₁ g)
_∙₂_ {gam a} {gam b} {gam c} (neg f) (pos (inj₂ b') g) = swp $ g ∙₂ (swp $ f b')
-}
mutual
_∙₁_ : ∀ {A B C} → Strat - (A ⊸ B) → Strat - (B ⊸ C) → Strat - (A ⊸ C)
_∙₁_ {gam a} {gam b} {gam c} σ (neg g) = neg (λ c' → ♯ σ ∙₂ (♭ (g c')))
_∙₂'_ : ∀ {A B C} → Strat - (A ⊸ B) →
_⊥ (Σ (T (mvEnc (C ⊗ B))) (λ i → ∞ (Strat - (C ⊗ B ▸ i)))) →
_⊥ (Σ (T (mvEnc (C ⊗ A))) (λ i → ∞ (Strat - (C ⊗ A ▸ i))))
_∙₂'_ {gam a} {gam b} {gam c} σ (now (inj₁ x , y))
= now (inj₁ x , ♯ σ ∙₁ ♭ y)
_∙₂'_ {gam a} {gam b} {gam c} (neg y) (now (inj₂ y' , y0))
= later (♯ (♭ y0) ∙₃' (unpos $ ♭ (y y')))
_∙₂'_ {gam a} {gam b} {gam {i} c} σ (later x)
= later (♯ _∙₂'_ {gam a} {gam b} {gam {i} c} σ (♭ x))
_∙₃'_ : ∀ {A B C} → Strat - (A ⊸ B) →
_⊥ (Σ (T (mvEnc (B ⊗ C))) (λ i → ∞ (Strat - (B ⊗ C ▸ i)))) →
_⊥ (Σ (T (mvEnc (A ⊗ C))) (λ i → ∞ (Strat - (A ⊗ C ▸ i))))
_∙₃'_ {gam a} {gam b} {gam c} σ (now (inj₂ x , y))
= now (inj₂ x , ♯ σ ∙₁ ♭ y)
_∙₃'_ {gam a} {gam b} {gam c} (neg y) (now (inj₁ y' , y0))
= later (♯ ((♭ y0) ∙₂' (swp' {gam a} {♭ (b y')} <$> (unpos $ ♭ (y y')))))
_∙₃'_ {gam a} {gam b} {gam {i} c} σ (later x)
= later (♯ _∙₃'_ {gam a} {gam b} {gam {i} c} σ (♭ x))
_∙₂_ : ∀ {A B C} → Strat - (A ⊸ B) → Strat + (C ⊗ B) → Strat + (C ⊗ A)
_∙₂_ {A} {B} {C} σ (pos y) = pos (σ ∙₂' y)
-- If we consider a positive game Q, a P-strategy on Q is given by a
-- term of type Strat + Q.
-}
-- Game morphisms
-- An element of A ≲ B represents a copycat-shaped strategy on A ⊸ B,
-- but it is more convinient to work with and we need to define a lot
-- of these things.
infix 8 _≲_
data _≲_ : Game → Game → Set where
sim : ∀ {A B} →
(h : Mov A → Mov B) →
((i' : Mov A) → ∞ (B ▸ (h i') ≲ (A ▸ i'))) →
A ≲ B
id≲ : ∀ {G} → G ≲ G
id≲ {gam f} = sim id (λ i → ♯ id≲ {♭ (f i)})
infixl 8 _≲∘≲_
_≲∘≲_ : ∀ {A B C} → A ≲ B → B ≲ C → A ≲ C
(sim f f') ≲∘≲ (sim g g') = sim (g ∘ f) (λ x → ♯ (♭ (g' (f x)) ≲∘≲ ♭ ((f' x))))
-- We bundle two-way copycat strategies into a ≈ structure.
-- This is how we represent isos.
infix 8 _≈_
data _≈_ : Game → Game → Set where
bsm : ∀ {A B} → A ≲ B → B ≲ A → A ≈ B
infixl 8 _≈∘≈_
_≈∘≈_ : ∀ {A B C} → A ≈ B → B ≈ C → A ≈ C
(bsm s s') ≈∘≈ (bsm r r') = bsm (s ≲∘≲ r) (r' ≲∘≲ s')
id≈ : ∀ {G} → G ≈ G
id≈ = bsm id≲ id≲
infixr 9 _^-1
_^-1 : ∀ {M N} → M ≈ N → N ≈ M
(bsm f g) ^-1 = bsm g f
wk₁ : ∀ {M N} → M ≈ N → M ≲ N
wk₁ (bsm f g) = f
wk₂ : ∀ {M N} → M ≈ N → N ≲ M
wk₂ (bsm f g) = g
-- Composing morphisms with strategies
{-
infixr 8 _≲∘_ -- _≈∘_
infixl 8 _∘≲_ -- _∘≈_
mutual
_≲∘_ : ∀ {M N} → M ≲ N → Strat - N → Strat - M
(sim h h') ≲∘ (neg f) = neg (λ i → ♯ (♭ (f (h i)) ∘≲ ♭ (h' i)))
_∘≲_ : ∀ {P Q} → Strat + P → P ≲ Q → Strat + Q
_∘≲_ {P} {Q} (pos y) (sim h y') = pos (_∘≲'_ {P} {Q} y h y')
_∘≲'_ : ∀ {P Q} → _⊥ (Σ (T (mvEnc P)) (λ i → ∞ (Strat - (P ▸ i)))) →
(h : T (mvEnc P) → T (mvEnc Q)) → ((i' : T (mvEnc P)) → ∞ (Q ▸ h i' ≲ P ▸ i'))
→ _⊥ (Σ (Mov Q) (λ i → ∞ (Strat - (Q ▸ i))))
_∘≲'_ {P} {Q} (now (x , y)) h y' = now (h x , (♯ (♭ (y' x) ≲∘ (♭ y))))
_∘≲'_ {P} {Q} (later x) h y' = later (♯ (_∘≲'_ {P} {Q} (♭ x) h y'))
_≈∘_ : ∀ {M N} → M ≈ N → Strat - M → Strat - N
g ≈∘ σ = (wk₂ g) ≲∘ σ
_∘≈_ : ∀ {P Q} → Strat + P → P ≈ Q → Strat + Q
σ ∘≈ f = σ ∘≲ (wk₁ f)
-}