
Computer Programs as Dialogue Games

Martin Churchill
Supervisors: Guy McCusker and Jim Laird

Department of Computer Science

4th June, 2009
Meeting of Minds
University of Bath

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Computer Crash

I On June 4th, 1996 the Ariane 5 expendable launch system
was launched into space.

I 37 seconds later the rocket veered off its flight path and was
destroyed by its automated self-destruct system.

I This was caused by the control software trying to fit a 64-bit
number into a 16-bit piece of memory.

I Sometimes a bug is more than just a nuisance.

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Quality Control

I Computers are everywhere, including many safety-critical
situations!

I So it’s important to avoid “bugs”

I Quality control exists — but prone to complacency / human
error

I Better if we can formally and mechanically check programs.

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Formal Methods

I We study computer programs as objects in their own right.
I We use

I Mathematics to describe our programs, how they behave, and
what they mean.

I Computer science to motivate our “design” choices, and
implement/use the resulting results

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Types and Terms

I We describe what computer programs look like by using
formal grammars

I ` 3 + 3 : Num says that 3 + 3 is a valid computer program of
type “number”

I ` x := x + 1 : Com says that the program that adds 1 to the
value of x has type “command”

I ` + : Num× Num→ Num says that + is a valid program takes
two numbers as input and outputs a number.

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Semantics

I We give operational semantics to these well-typed terms to
describe how programs behave

I 3 + 3⇒ 6 tells us that the program “3 + 3” reduces to final
answer “6”

I (x := x + 1, {x 7→ 6})⇒ {x 7→ 7}

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Formal Reasoning

I We now wish to reason about these programs:
I Does this program meet its specification?
I Is the behaviour of (obviously correct) Program A equivalent to

the behaviour of the (more efficient but less clear) Program B?
I Is it possible that Program A will go into an infinite loop and

get stuck?

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Program Equivalence

I We need to formalise this notion of equivalence of two
programs

I Not enough to simply talk about “returning the same answer”
— makes sense for Num, but what about Num→ Com?

We say that M1 for M2 are equivalent iff

Replacing M1 by M2 in any program of type Num yields the
same answer (and vice-versa).

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



A Large Quantification

I Reasoning about program equivalence directly is complex
I We have a large quantification — “in any program”

I So we seek models of the language that identify equivalent
programs

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Game Semantics

I We can model programs as dialogue games between the
program and its environment.

I Program and Environment alternately play moves, which
might represent an input request or the final answer.

I Programs are represented as strategies for Program —
recipes that express which move the program should play
based on what’s happened so far.

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Example — Addition

For example, we might consider a program for addition which takes
two numbers as input and returns a number
(+ : Num× Num→ Num).

Num × Num → Num

q E
q P
n E

q P
m E

m + n P

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Game Semantics 1

I We represent types as games, and terms as strategies.

I These models are fully abstract — equivalent programs are
represented by the same strategy.

I Programming language features correspond to constraints on
strategies

⇒ A flexible and accurate way to model programs.

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Game Semantics 2

The main reasons this works:

I Compositional reasoning — the meaning of a program is
given by the meaning of its components.

I Operational, sequential content — the models are
sequential in nature, giving fine grained control of when things
happen.

I Flexibility of constraints — the models are rich in structure,
leading to flexibility for modelling different programming
languages

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Verification

I We can check if two programs are correct by seeing if the
corresponding strategies are the same.

I Elsewhere1, work analyses how this can be done mechanically
(and for which languages)

I We can further use these ideas to check if programs satisfy
specifications (tranforming program properties to properties
on strategies)

1Ong, Ghica...
Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Current Work in Bath

Includes:

I Giving a higher-level, algebraic account of many of the
characteristics of game semantics.

I Investigating the use of game semantics for analysing access
control and interference

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games



Questions?

Martin Churchill Supervisors: Guy McCusker and Jim Laird Department of Computer ScienceComputer Programs as Dialogue Games


