
The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Imperative Programs as Proofs
(via Game Semantics)

Martin Churchill, Jim Laird, Guy McCusker
University of Bath

University of Birmingham, 8th July 2011

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Motivation 1: Curry-Howard Correspondence

The Curry-Howard isomorphism notes a striking correspondence
between proofs and functional programs:

Types Propositions

Programs Proofs

Evaluation Proof normalisation

I We can extend our notion of programs to include those with
imperative effects...

I What are the corresponding proofs?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Motivation 2: A Simple Games Model

I Modelling programs/proofs as strategies is a compelling
metaphor and has yielded strong technical results.

I ⇒ the games themselves are important mathematical entities.
I Curien-Lamarche sequential games are a strikingly simple

formulation
I Rich mathematical structure, can model many languages and

logics

I Can we find a logic where each strategy interprets a proof?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Overview

I We will develop a logic WS1 where formulas correspond to
games and proofs to history-sensitive strategies

I Proofs with imperative computational content

I The system is expressive:
I This logic contains first-order intuitionistic linear logic
I We can embed a total imperative programming language
I ⇒ We can use it to reason about imperative programs

I This logic admits a strong full completeness result with
respect to the game model

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Formulas of WS1

I Fix a first-order language L with pairs of predicates (φ,φ) and
a variable set V (=∈ φ)

I For formulas of the logic are as follows:

M, N := 1 | ⊥ | φ(−→x) |
M ⊗ N | M � N | N C P |
∀x .P | M&N | !N

P, Q := 0 | > | φ(−→x) |
POQ | P C Q | P � N |
∃x .P | P ⊕ Q | ?P

I We have an involutive (−)⊥ operation switching polarity

I We can encode implication M (N = N C M⊥

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Formulas as Games

I Formulas denote (families of) two-player games
I (indexed over L-structures and valuations)
I Opponent and Player alternately play moves according to a

tree of valid plays
I In negative formulas Opponent starts, in positive formulas

Player starts

I Proofs of a formula denote (families of) winning P-strategies
on the interpretation of that formula.

I Player must always respond to an Opponent-move
I There is a winning condition for infinite plays

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Units and Atoms

M, N := 1 | ⊥ | φ(−→x) | . . .
P, Q := 0 | > | φ(−→x) | . . .

I 1 represents the empty negative game (no moves) (` 1)

I ⊥ represents the game with a single Opponent move (6` ⊥)

I φ(−→x) is interpreted as 1 if the model validates φ(−→x), ⊥ if it
does not

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Units and Atoms

M, N := 1 | ⊥ | φ(−→x) | . . .
P, Q := 0 | > | φ(−→x) | . . .

I 0 represents the empty positive game (no moves) (6` 0)

I > represents the game with a single Player move (` >)

I φ(−→x) is interpreted as 0 if the model validates φ(−→x), > if it
does not

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Additives and Quantifiers

M, N := M&N | ∀x .P | . . .
P, Q := P ⊕ Q | ∃x .P | . . .

I In M&N, Opponent may chose to start a play in M or in N
I So a strategy ` M&N is a pair (` M,` N)

I In ∀x .M(x), Opponent may chose a value v for x in the
model and start a play in M(v)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Additives and Quantifiers

M, N := M&N | ∀x .P | . . .
P, Q := P ⊕ Q | ∃x .P | . . .

I In P ⊕ Q, Player may chose to start a play in P or in Q
I So a strategy ` P ⊕ Q is a strategy ` P or a strategy ` Q

I In ∃x .P(x), Player may chose a value v for x in the model
and start a play in P(v)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Multiplicatives

M, N := M ⊗ N | M � N | N C P | . . .
P, Q := POQ | P C Q | P � N | . . .

I A play in M ⊗N is an interleaving of a play in M with a play
in N

I Opponent may start in either component, and then switch
between components

I A play in M � N is a play in M ⊗ N that must start in M
I So we have M ⊗ N ∼= M � N&N �M

I In the game M C P, it is Player that can switch between the
two components.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Multiplicatives

M, N := M ⊗ N | M � N | N C P | . . .
P, Q := POQ | P C Q | P � N | . . .

I A play in POQ is an interleaving of a play in P with a play
in Q

I Player may start in either component, and then switch
between components

I A play in P C Q is a play in POQ that must start in P
I So we have POQ ∼= P C Q ⊕ Q C P

I In the game P �M, it is Opponent that can switch between
the two components.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Exponentials

M, N := !M . . .
P, Q := ?P . . .

I !M denotes an (ordered) interleaving of infinitely many copies
of M

I Opponent may spawn new copies of M and switch between
copies he has opened (!M ∼= M�!M)

I ?P denotes an (ordered) interleaving of infinitely many copies
of P

I Player may spawn new copies of P and switch between copies
he has opened (?P ∼= PC?P)

I These are the only operators yielding infinite games

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

Opponent asks for output

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

Player gives output

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

or Player asks for input

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

Opponent gives input

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Example

I The game of Booleans can be given by B = ⊥C (>⊕>)
I A play consists of an O-move (q) followed by one of two

P-moves (t or f)
I Two winning strategies correspond to True or False values

I We can represent ’functions’ Bool → Bool by
B (B = B C B⊥ = (⊥C (>⊕>)) C (>� (⊥&⊥))

Player gives output

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Sequents

A sequent of WS1 is Φ ` Γ where:

I Φ = X ; Θ where X is variables in scope, Θ is atomic
assumptions on those variables.

I Γ is a nonempty list of formulas, of either polarity.

Φ ` M,P,Q,N

Comma is to be read as a left-associative � or C:

Φ ` ((M C P) C Q)� N

⇒ First move must occur in first formula.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Core Rules

Φ ` 1, Γ Φ ` >
Φ ` M,N, Γ Φ ` N,M, Γ

Φ ` M ⊗ N, Γ

Φ ` Q,P, Γ

Φ ` POQ, Γ

Φ ` P,Q, Γ

Φ ` POQ, Γ
Φ ` M, Γ Φ ` N, Γ

Φ ` M&N, Γ

Φ ` P, Γ

Φ ` P ⊕ Q, Γ

Φ ` Q, Γ

Φ ` P ⊕ Q, Γ

Φ ` P
Φ ` ⊥,P

Φ ` ⊥,POQ, Γ

Φ ` ⊥,P,Q, Γ
Φ ` ⊥,P � N, Γ

Φ ` ⊥,P,N, Γ
Φ ` ⊥, Γ

Φ ` ⊥,N, Γ
Φ ` N

Φ ` >,N
Φ ` >,M ⊗ N, Γ

Φ ` >,M,N, Γ
Φ ` >,N C P, Γ

Φ ` >,N,P, Γ
Φ ` >, Γ

Φ ` >,P, Γ
Φ ` A,N, Γ

Φ ` A � N, Γ
Φ ` A,P, Γ

Φ ` A C P, Γ

Φ ` N, !N, Γ

Φ `!N, Γ

Φ ` P, ?P, Γ

Φ `?P, Γ

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Core Rules (atoms and quantifiers)

A proof of X ; Θ ` Γ is interpreted as a strategy on JΓK(L) for each
Θ-satisfying L-model over X

Θ, φ(−→x) ` ⊥, Γ
Θ ` φ(−→x), Γ

Θ, φ(−→x) ` >, Γ
Θ, φ(−→x) ` φ(−→x), Γ

X] {x}; Θ ` N, Γ
x 6∈ FV (Θ, Γ)

X ; Θ ` ∀x .N, Γ

X] {y}; Θ ` P[y/x], Γ

X] {y}; Θ ` ∃x .P, Γ

(X ; Θ ` Γ)[zx ,
z
y] X ; Θ, x 6= y ` Γ

X ; Θ ` Γ
Θ, x 6= x ` Γ

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Other Rules

` Γ∗,∆

` Γ∗, 1,∆

` Γ∗,M,N,∆

` Γ∗,M ⊗ N,∆

` Γ∗,M,N,∆

` Γ∗,N,M,∆

` Γ∗,M,∆

` Γ∗,∆

` Γ∗,∆

` Γ∗, 0,∆

` Γ∗,P,Q,∆

` Γ∗,POQ,∆

` Γ∗,P,Q,∆

` Γ∗,Q,P,∆

` Γ∗,∆

` Γ∗,P,∆

` M, Γ,∆+ ` N,∆+
1

` M, Γ,N,∆+,∆+
1

` N,N⊥
` Γ, !M,∆

` Γ,M,∆

` Γ∗,N⊥, Γ1 ` N,∆+

` Γ∗,∆+, Γ1

` Γ, !M,∆

` Γ, !M, !M,∆
` M,P⊥,P

`!M,P

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Motivation
Formulas and Games
Proofs and Strategies

Interpretation of Proofs

I We can interpret proofs as (families of) strategies using the
ideas described above

I Semantics of the ‘other’ rules use the categorical structure of
the games model:

I One may compose strategies M (N and N (L, take the
tensor of maps M ⊗ N (M ′ ⊗ N ′ and so on

I We distinguish them from the ‘core’ rules due to full
completeness result...

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Full Completeness

I We can show that any uniform family of winning finitary
strategies is the denotation of a unique analytic proof

I We define a semantics-guided proof search procedure:
I Choice of rule to prove ` A, Γ determined by A in most cases
I There is a choice in O,⊕,∃ cases; determined by move played

by the strategy
I But what if there is a different choice in different components?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Uniformity of Strategies

I The interpretations of proofs are uniform families of
strategies.

I If (L, v) |= φ(−→x) whenever (L′, v ′) |= φ(−→x) then JΓK(L′, v ′) is
a subgame of JΓK(L, v)

I Uniformity means that the strategy on (L′, v ′) is the restriction
of the strategy on (L, v)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Non-example

Consider ⊥C (φ⊕ (>� φ)) (“excluded middle”)

q

1 2

3

There is a family of winning strategies, but it is not uniform.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Categorical Formalisation

Uniformity is formalised using tools from category theory...
I A sequent X ; Θ ` Γ is interpreted as a functor MΘ

X → G
I MΘ

X is the category where objects are Θ-satisfying
L-structures and X -valuations, and morphisms are functions
that preserve positive predicates and valuation (⇒ injective)

I G is the category of games and strategies

I A proof of X ; Θ ` Γ is interpreted as a uniform winning
strategy on JX ; Θ ` ΓK

I A lax-natural transformation I ⇒ JX ; Θ ` ΓK that is pointwise
winning

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Uniformity Results

Proposition

Provided Θ is “lean” (contains x 6= y for all distinct x , y ∈ X)

I A uniform winning strategy on P ⊕ Q is a uniform winning
strategy on P or a uniform strategy on Q

I A uniform winning strategy on POQ is a uniform winning
strategy on P C Q or a uniform winning strategy on Q C P

I A uniform winning strategy on ∃x .P(x) corresponds to a
choice of a unique variable y (in scope) and uniform winning
strategy on P(y).

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Reification of Strategies

We can hence define our proof search procedure for bounded
strategies:

I Apply match rule to ensure Θ is lean
I Decompose the head formula using core introduction rules

until it is a unit
I Choices for O,⊕,∃ determined by strategy

I Consolidate the tail into a single formula using the elimination
rules

I Strictly decrease the size of the strategy using the rules that
remove the head unit

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Some Core Rules (reminder)

(Φ ` Γ)[zx ,
z
y] Φ, x 6= y ` Γ

Φ ` Γ
Φ ` 1, Γ Φ ` >

Φ ` M,N, Γ Φ ` N,M, Γ

Φ ` M ⊗ N, Γ

Φ ` Q,P, Γ

Φ ` POQ, Γ

Φ ` P,Q, Γ

Φ ` POQ, Γ
Φ ` M, Γ Φ ` N, Γ

Φ ` M&N, Γ

Φ ` P, Γ

Φ ` P ⊕ Q, Γ

Φ ` Q, Γ

Φ ` P ⊕ Q, Γ

Φ ` P
Φ ` ⊥,P

Φ ` ⊥,POQ, Γ

Φ ` ⊥,P,Q, Γ
Φ ` ⊥,P � N, Γ

Φ ` ⊥,P,N, Γ
Φ ` ⊥, Γ

Φ ` ⊥,N, Γ
Φ ` N

Φ ` >,N
Φ ` >,M ⊗ N, Γ

Φ ` >,M,N, Γ
Φ ` >,N C P, Γ

Φ ` >,N,P, Γ
Φ ` >, Γ

Φ ` >,P, Γ
Φ ` A,N, Γ

Φ ` A � N, Γ
Φ ` A,P, Γ

Φ ` A C P, Γ

Φ ` N, !N, Γ

Φ `!N, Γ

Φ ` P, ?P, Γ

Φ `?P, Γ

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Full Completeness

Thus, each finitary winning uniform strategy is the denotation of a
unique analytic proof.

I In the exponential-free subsystem, the interpretation of any
proof is finitary.

I We can ‘normalise’ proofs to analytic proofs via the semantics
I (unique analytic proof with same semantics)

I ⇒ all of the ‘other’ rules (e.g. cut) are admissible

This also works for the full system, if we allow normal forms to be
infinitary analytic proofs.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Uniformity
Reification of Strategies
Proof Normalisation

Analytic Theorems

I In e.g. ILL, we can reduce any proof to an analytic (cut-free)
finite proof, even in the presence of exponentials

I In WS1, the analytic proof may be infinite. Why the weaker
situation?

I In ILL proofs ∼= innocent strategies — a strategy on !N must
act the same way in each thread.

I In WS1 proofs are history-sensitive — so ! really introduces
infinite (possibly non-computable) behaviour

I But we can write proofs which denote infinite (computable,
total) behaviour...

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Exponentials as Final Coalgebra
Intuitionistic Linear Logic
Boolean Cell and Stack

Non-core rules for Exponential

To generate a finite proof on a type involving the exponentials, we
can use the following proof rule:

` M,P⊥,P

`!M,P

This represents the fact that:

Proposition

In G, !M is the final coalgebra of the functor M � .

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Exponentials as Final Coalgebra
Intuitionistic Linear Logic
Boolean Cell and Stack

Intuitionistic Linear Logic

I We can use this (with contraction) to derive promotion
I ⇒ Embedding of Intuitionistic Linear Logic in WS1

I There are formulas that are not provable in ILL but are
provable in WS1 e.g. medial:

` ((α⊗ β (⊥)⊗ (γ ⊗ δ (⊥) (⊥) (
((α(⊥)⊗ (γ (⊥) (⊥)⊗ ((β (⊥)⊗ (δ (⊥) (⊥)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Exponentials as Final Coalgebra
Intuitionistic Linear Logic
Boolean Cell and Stack

Boolean Variables

I Let Bi = (⊥&⊥) C> (input Boolean)

I !var =!(B&Bi) is a type of reusable Boolean variables (read
method and write method)

I We can define a reusable Boolean cell ` B (!var using the
anamorphism rule and a proof p ` var,B,B⊥

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Exponentials as Final Coalgebra
Intuitionistic Linear Logic
Boolean Cell and Stack

Boolean Cell — p

B ((B & Bi) � B
r

r
b

b
r
b

wb

ok
r
b

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

Exponentials as Final Coalgebra
Intuitionistic Linear Logic
Boolean Cell and Stack

Boolean Cell — ana(p)

B ((B & Bi) � B ((B & Bi) � ((B & Bi) � . . .)
wb

wb

ok
ok

r
r
b

b
...

I We can extend this example to define a Boolean Stack in
WS1 (B ∼= pop, Bi ∼= push. For the “state” we use !B)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Algol-style Total Programming Language

We can embed a total programming language (TotLang).

I Simply typed lambda calculus

I Ground types: com, nat, var

I Constants: skip, sequencing, ifzero, repeat, 0, suc,
assignment, deref, newvar, coroutines, encaps, mkvar

add = λ m n . newvar x := n in

repeat m (x := succ !x) ; !x

newstack = encaps (λ g . newvar x := 0 in g a b) 0

where a = λ n . mkvar n (λ m . x := suc m)

b = λ n . ifzero !x then n else

(let z = !x - 1 in x := 0 ; z)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Naturals in WS1

I To embed TotLang into WS1 we must add natural numbers
to WS1...

N := ω | . . . P := ω | . . .

I ω (resp. ω) denotes the game ⊥ω (resp. >ω)

I Proof rules:

0 ` ω suc ` ω, ω
` P ` P⊥,P

ind ` ω,P

I Full completeness, normalisation etc extends to this setting

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Language Embedding

I We can map types to negative formulas: com 7→ ⊥C>,
nat 7→ ⊥C ω, var 7→ B&Bi, A→ B 7→ BC?A⊥,. . .

I The lambda calculus part uses the structure of the ILL
embedding

I Constants can be mapped to proofs in WS1

The games model of TotLang is fully abstract, resultantly:

I Two programs M and N are observationally equivalent if and
only if their representations in WS1 have the same (infinitary)
normal form

(we can also embed a call-by-value language with these features)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Formulas as Specifications

Formulas of WS1 are much finer than the programming language
types, we can use them to represent specifications on programs.

I Evalation order of arguments

I Number of times an argument is interrogated

I Predicates on ground values

Example:

I Identity specification on nat→ nat given by
⊥C>� ∀x .⊥C ∃y .y = x

Adding function symbols increases expressivity further.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Uniformity for Controlling Imperative Flow

We can use uniformity of the underlying strategies to give
refinements on imperative beavhiour. E.g...

I Define B′ = ⊥C (α⊕ β), Bi′ = (α&β) C>.

I If α and β are false, B′ = B, Bi′ = Bi

I ... in which case worm = Bi′�!B′ represents the type of a
“write-once-read-many” Boolean cell.

I But since any proof must be a uniform strategy on all models,
any proof of worm must act as a well-behaved Boolean cell.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Data-independence

We can use the first-order structure in a different way to model a
data-independent language:

I Interpretation of ground type depends on model
(val = ⊥C ∃x .>)

I Cells of ground type, only operation is equality

I Example program: data-independent set

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Further Directions

I Enhancing the logic to be able to specify more interesting
properties of more interesting programs

I Introducing propositional variables
I Ranging over arbitrary games — polymorphism

I Recursive types
I a la Clairambault — e.g.

list(B) = µX .⊥C (>⊕ (>� (B⊗ X)))

I Universality results
I !N is a universal type in the games model... are the

embeddings/retractions definable in the logic?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

The Logic WS1
Full Completeness

Exponentials
Reasoning About Programs

TotLang and its Embedding
Formulas as Specifications
Further Directions

Thank You

Any questions?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs (via Game Semantics)

	The Logic WS1
	Motivation
	Formulas and Games
	Proofs and Strategies

	Full Completeness
	Uniformity
	Reification of Strategies
	Proof Normalisation

	Exponentials
	Exponentials as Final Coalgebra
	Intuitionistic Linear Logic
	Boolean Cell and Stack

	Reasoning About Programs
	TotLang and its Embedding
	Formulas as Specifications
	Further Directions

