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1. A few Random Quotes 
Clouds are not spheres, coastlines are not circles, bark is not smooth, nor does 

lightning travel in straight lines. 

Mandelbrot  

 

"And are you not", said Fook leaning anxiously forward, "a greater analyst than 

the Googleplex Star Thinker in the Seventh Galaxy of Light and Ingenuity which 

can calculate the trajectory of every single dust particle throughout a five-week 

Dangrabad Beta sand blizzard?" 

"A five-week sand blizzard?" said Deep Thought haughtily. "You ask this of me 

who have contemplated the very vectors of the atoms in the Big Bang itself? 

Molest me not with this pocket calculator stuff." 

Douglas Adams 

 

I wonder whether fractal images are not touching the very structure of our 

brains. Is there a clue in the infinitely regressing character of such images that 

illuminates our perception of art? Could it be that a fractal image is of such 

extraordinary richness, that it is bound to resonate with our neuronal circuits and 

stimulate the pleasure I infer we all feel? 

P. W. Atkins  

2. Introduction 
Throughout recent years much development and interest has gone into concepts 

such as the newly rising Chaos theory. I’m going to discuss something that could 

possibly considered a specific part of this, something generally known as fractal 

geometry. 

 

One definition of the subject I’ve found claims that fractal geometry can be 

considered different to classical geometry in that it does not deal in integer 

dimensions. However, this probably sounds mind-boggling, as a dimension is 

defined as the size of a basis that cannot, of course, have a non-integral 

cardinality. However, hopefully before the end of this document I’ll be able to 

convince you that the idea of represent fractals as having fractional dimensions is 
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a reasonable conceptualisation to make, and it is indeed possible to use it as a 

definition of a fractal (providing, of course, you use a different definition of 

‘dimension.’ More on this later.) 

 

Before I begin going into the mathematics of how fractals work, I ask you this 

question: What is the length of the coastline of Britain? Immediately one could go 

out, ignoring of course all of the practical problems involved, and wander around 

Britain with their trusty 15-inch rule and spirit level and a few years later get 

back with a reasonable result. However, one may argue the 15-inch rule is clearly 

a straight rigid object: it would have been able to measure all of the inny-and-

outy-bits that are on a smaller scale than 15 inches – the resolution of the 

journey, if you like, is 15 inches. So one can get a tape measure and try it again, 

but still that’s limiting to the thickness of the tape measure. One can go further 

and further down, and on each measurement the perimeter measured would 

grow and grow, limitlessly. So there is no sensible answer to that question. Now 

one could argue that there does indeed exist a fundamental level of fundamental 

atoms, or that space is discrete, therefore it is possible to define. However this 

clearly cannot work assuming space is continuous. It wouldn’t be hard to argue, 

from the analogy above, that the coast of Britain has a finite area but an infinite 

perimeter. Quite a strange concept at first. 

 

So, perhaps it is these continuous spaces that allow these strange things like the 

above described to exist, and anyway the above is all very hand-wavey, so of 

course the natural thing for us to do is to be more explicit and try to find things 

like the above phenomena in nice well-defined places like the complex plane. 

Consider the function defined by 

 

z0=z ; zn+1 = zn
2 + z 

 

Now, let M be the set {z ∈ C such that zn does not diverge to infinity}, called the 
Mandelbrot set. This is really quite simple to define – after all, it should be 

reasonable easy to determine which values of c cause a sequence that tends to 

infinity and which do not, obviously when you get sufficiently big c it will diverge 

to infinity, so it’s just finding that limit. Well, yes, in a way. But the shape you get 

is quite interesting – one can ‘zoom in’ on the perimeter of this shape and it just 

never gets less complicated, patterns of the original shape appear on the edge of 

the main shape, and this continues forever, no matter how small the scale 

becomes: turtles all the way down.1 

3. Types of fractals 
It is possible to characterise fractals into different ‘types’ – a couple that we shall 

have a look at include self-similar fractals and self-repeating fractals. Of course 

some fractals, such as the aforesaid coast of Britain, may not have repeating 

patterns – they may be ‘irrational’ if you like – or, such as the Mandelbrot set, 

there might be patterns on a smaller level similar to patterns on a higher level, 

but not quite the same. I shall now look into fractals that replicate themselves 

directly, and the ‘dimension’ of these fractals. 

4. Self-similar Fractals 
Many shapes, even non-fractals (i.e. those with an integer dimension, although 

we still haven’t defined this) are self-similar. Let A and B be shapes. Then A is 

said to be similar to B if there is an isomorphism from A to B (i.e. if B can be 

obtained by a sequence (composition) of translations, rescalings and rotations of 

A.)  

                                           
1 A nice Brief History of Time reference. 
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Behold: 

 

 
(Images: http://math.rice.edu/~lanius/fractals) 

 

All of the above are self-similar, i.e. the shape entirely consists of ‘joining’ 

together shapes that are similar to the shape itself. Now consider the following 

shapes: 

 

 
 

 

 
 

The second image can be observed as being a larger version of the first image (as 

if one zoomed in on the former image.) However it also appears to be three 

versions of the larger shape placed together: this is an example of a self-similar 

fractal. The shape above (known as the Sierpinski Gasket) is made by placing 

together three Sierpinski Gaskets, each of which consists of three Sierpiknski 

Gaskets… indeed turtles all the way down. It can also be made from a ‘top-down’ 

approach by considering an axiom (the initial shape) and its generator (a function 

between two shapes.) In the above case we have: 
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I.e. we take a sequence of shapes (an), with a0 defined as the ‘axiom’ and an 

defined as the generator applied to an-1 (in this case cutting out the middle 

triangle of any instances of the axiom within the shape.) The final fractal is then 

the limit of this sequence, however that is defined. This axiom-generator 

approach seems a nice, well-defined way of generating self-similar fractals. 

(Images of the Sierpinksi Gasket from 

http://astronomy.swin.edu.au/~pbourke/fractals/gasket/) 

5. Further Examples of the Axiom-Generator Concept 
Other examples of self-similar fractals defined in this way include the Koch curve: 

 

 

 

 

 

 

 

 

 

 

Here the axiom is first shape and the 

generator takes any straight line in the 

curve and replaces for a (rotated, 

rescaled2) version of the first shape 

here. The effect is shown on the left. 

 

 

A three-dimensional version of the Sierpinski gasket: 

 

                                           
2 I may be tempted to use the word ‘isomorphed’ here but I don’t want to use too 

many nonstandard words… 
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And the Menger sponge: 
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6. Further Analysis of the Gasket 
Let us consider a Sierpinksi Gasket whose axiom is a triangle, of unit area. It’s 

clear that the first iteration removes a quarter of the area, the second iteration a 

further 3/16, the then 9/64. Define An as the area removed from the gasket in an 
and we have 

An = ( )∑
=

n

i
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1
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3
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1  

Thus the area of the gasket itself is 0 as An→1 as n→∞ (using the geometric 
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the gasket as n→∞ is zero. Let us now consider the area perimeter of an, Pn with 

initial perimeter 1. After the first iteration the perimeter is 1+1/2, after the 

second 1+1/2+3/4, giving 

Pn= ( )∑
=

+
n

i

i

1
2

3
3

11  

Now Pn→∞ as n→∞ (geometric series.) Thus the Sierpinski Gasket has an infinite 

perimeter but zero area3 – an odd concept indeed. This relates to what I 

mentioned earlier, and identifies the Sierpinski Gasket in the same category as 

the coast of Britain as discussed above. Before long we shall explicitly define this 

category when we explore this concept of the ‘fractal dimension’ I have so 

teasingly hinted about before. However, firstly I shall explain an interesting place 

the Gasket can be found (apart from this document, which may be as argued as 

interesting depending on one’s perspective, and, indeed, opinion.) 

7. Interesting Application of the Gasket 
Last year at a talk by Ian Stewart revealed an interesting application of the said 

Gasket in a link with the age-old puzzle the Tower of Hanoi.4 

 

 
 

                                           
3 Here I have chosen to assume that the perimeter of the limit of an is the limit of 

Pn and likewise with the area – i.e. the two limits are interchangable. However, it 

doesn’t seem too unwise to say that area (perimeter) of the final gasket the limit 

of the area (perimeter) of the sequence by definition. 
4 The tower of Hanoi is a game with the set up as illustrated. Players can move 

discs from one peg to another as long as on any particular peg the discs are 

decreasing in size. All of the discs start on one peg (in decreasing order) and the 

game is won when all of the pegs are on a different peg (also in decreasing order 

– although the content of this bracket is deducible from previous facts.) 



Keble Summer Essay : Introduction to Fractal Geometry 

Martin Churchill : Page 7 of 24 

Here (an) represents the game with n different discs, each vertex of an 

representing a valid configuration of discs. For example, in one-disc and two-disc 

games we have: 

 

 
 

Where n-tuples represent the position of the discs (1, 2 or 3 representing the 

different pegs) represented in increasing order. The only edges that are included 

are those of valid moves (by the Laws of the Game, on a specific peg the discs 

must be arranged in decreasing order of size.) The fact that this shape is 

generated is due to the fact that only valid n-tuples are included in the gasket, 

but it also suggests something slightly more cunning and subtle. The fact that the 

game can be represented by the Sierpinski Gasket seems to suggest that the 

game consisting of n discs can be solved by solving two versions of solving the 

game of n-1 discs (we want to go from one extreme vertex to another – the 

logical (and quickest) route being ‘down one of the sides’ of the triangle, which 

involves going from one extreme vertex to the other of two subgaskets of n-1 

discs.) : This is true, to solve for 255 discs, move the first 254 discs from Peg 1 

to Peg 2 (which we can do,) then move the remaining peg to Peg 3 and then the 

first 254 discs from Peg 2 to Peg 3. A nice recursive solution which defines how to 

solve the problem. (Each of the three subgaskets5 refers to the puzzle with 254 

disks with the 255th disc residing in one of the three remaining pegs.) The gasket 

also has other applications: when the catering industry catch on, they could 

create a Sierpinski potato, one that is infinitely crispy but has zero calories. 

8. Fractal Dimension 
Here I shall attempt to define the fractal dimension of a shape (this is not the 

classical definition of a dimension, i.e. the cardinality of a basis, however these 

two values are equal when the fractal dimension is an integer. It is also known as 

the Hausdorff dimension.) This definition relates to the more intuitive definition of 

dimension for a geometrical shape, and is thus more specialised than the classical 

definition of dimension. 

 

Consider a spherical cow, of radius R. If its radius is doubled to 2R, its mass6 is 

increased by a ratio of 23. Similarly for a circular cow, its mass would be 

increased by a ratio of 22. We can express this as 
DRRM ~)(  where D is our 

‘fractal dimension.’ (A shape in which D is equal to the dimension of the space the 

shape is embedded in, the shape is said to be compact, for example a cube in 

there-dimensional space R3.) 

 

It can be seen that for any fractal object (of size P, made up of smaller units of 

size p), the number of units (N) that fits into the larger object is equal to the size 

                                           
5 I am aware this is not technically a word but feel its usage was justified in this 

case. 
6 Here the term ‘mass’ is used in lieu of volume so it can be used generally 

irrespective of dimension. 



Keble Summer Essay : Introduction to Fractal Geometry 

Martin Churchill : Page 8 of 24 

ratio (P/p) raised to the power of D. We have ( )DP
PN =  or 

)log(

log

p
P
N

D =  or 

ND rlog=  where p
Pr = , the aspect ratio of the shape. 

In the above examples this gives: 

 

Shape N r 
D=

r

N

log

log
 

Sierpinski Gasket 3 2 1.58 

Koch Curve 4 3 1.26 

3D Sierpinski 

Gasket 

5 2 2.32 

Menger Sponge 20 3 2.09 

 

Note here that the values given are vaguely intuitive: The Koch curve seems 

slightly more than one-dimensional but not enough to be considered two-

dimensional, the Sierpinski Gasket seems ‘more two-dimensional’ than a Koch 

curve, and then with the 3D Gasket and the Sponge we’re heading towards three-

dimensionality7. 

9. Introducing the Mandelbrot Set 
I am now going to take us away from the well-defined Axiom-and-Generator 

method of defining self-similar fractals and look at more complex objects. Recall 

the Mandelbrot set described in the introduction: 

  

z0=z ; zn+1 = zn
2 + z 

 

With M the set {z ∈ C such that zn does not diverge to infinity}, called the 
Mandelbrot set. As a subset of the complex plane, M can be seen visually as 

 

 
 

The above shape is just about contained in the disc of radius two, the origin lies 

somewhere in the centre of the shape. Note that this shape is, despite 

appearances, connected – the ‘dots’ that seem separate from the main shape are 

connected, but the connection is perhaps too small to see here – we shall 

                                           
7 See Footnote Five. 
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discover this later, on our Mandelbrot Walk. It’s also interesting to note that this 

shape is closed – see Priestley’s Introduction to Complex Analysis, Exercise 3.16. 

 

This shape seems rather odd and strange for such a simply defined region. What 

makes things even more mind-boggling is what happens if one zooms in on the 

border of the said region: the border gets no less complicated the further down 

one goes, with (some slightly distorted) versions of the original shape budding off 

of the main shape – the fact that its not entirely replicating and similar but rather 

slightly different versions of the original shape makes it a very interesting object 

indeed. Fractals of this kind become even more interesting when colour is added 

– the set is coloured black as above, however if we add colour it helps to a) 

highlight parts of the set that are difficult alone to see in the diagram and b) 

make Everything Look Pretty. This is how we shall define the colour of a point in a 

Mandelbrot-style fractal: 

 

Colour(z) = f(0) if z ∈ M or f•r(z) if z ∉ M where r(z) is the number of iterations 

for a point z to go out of the circle radius 28 (this is a footnote, not an exponent,) 

and f is an arbitrary mapping from integers to colours. (Formally, here r(z) = the 

least m such that |zm|>2.) 

 

I shall explain how such a mapping f is to work shortly, but firstly let’s use this 

added idea of colour to explore the said Mandelbrot set. Below is a series of 

images exploring the Mandelbrot set, each image zooming in on the centre of the 

preceding image… 

 

10. A Mandelbrot Walk 
We start off with the Mandelbrot above, with a colour function added: 

 

 
 

If we know zoom onto the centre of this image, we see the edge of what appears 

to be this set: 

 

 
 

Hmm it appears to have a ‘trail’ coming off of the fractal to the left if we zoom in 

on this we see a further bulb: 

                                           
8 There is a reason for this value: and it shall be revealed. In due time. 
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Now this isn’t a separate bulb to the first one, it is connected – down the red strip 

in the centre there is a ‘strip’ that lies entirely within the Mandelbrot set. Zooming 

in on this bulb: 

 

 
 

Here we have something that is similar, but not quite the same, as the original 

set. Zooming in on the centre of this image we start to see the right edge of this 

bulb: 

 

 
 

Zooming in on the tip of this we see: 

 

 
 

Note here new colours are coming into play that have not been seen in the set so 

far, again, zooming in further we have 
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and then 

 

 
 

Ooh there looks like there’s something interesting (and, indeed, yellow)  

in the middle there: let’s have a closer look. 

 

 
 

Hmm that’s pretty – didn’t see that coming at all. Note that although this is all 

mostly non-black and not part of the set the set extends to all parts of the yellow 

here. Zooming further we see the following images: 
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We could continue this (literally) forever: the deeper we go the more interesting 

things we find, an infinite amount of an infinitely complex shape. The other 

beautiful thing about this is how easy it is to create: as its very simple to 

mathematically define, one can write their own (relatively simple) program to 

create all of the above imagery – this images having been directly deduced from 

mathematics itself, thus this amazingly complex image being found in the very 

nature of logic itself – a strange thought. I have created a said program, which 

provides most fractal images of this type in this document, and I will discuss in 

more detail later. 

11. The Julia Set(s) 
The Mandelbrot can be defined simply as the function given above. An extension 

of the Mandelbrot is the Julia set. The Mandelbrot set was defined 

 

z0=z ; zn+1 = zn
2 + z 

 

With M the set {z ∈ C such that zn does not diverge to infinity} and is similar to a 

Julia set. A Julia set has a complex (constant) parameter c with 

 

z0=z ; zn+1 = zn
2 + c 

 

With J(c) the set {z ∈ C such that zn does not diverge to infinity} For c=-¾ we 

have 

 

 
 

This is interesting: it’s a kind of double Mandelbrot-set. 
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It is also an interesting note that the Julia set and Mandelbrot sets are closely 

related. The following facts shall now be revealed (although it should be noted 

that why this facts are the case is beyond the scope of this essay.): 

 

• If c is inside the Mandelbrot set, then the Julia set for c will be connected. 

If c is outside the Mandelbrot set, then the Julia set for c will be 

disconnected (that is, it will have at least two disconnected islands.)  

• If we choose a c from inside the Mandelbrot Set, its location inside the set 

will have a radical influence in the shape of the respective Julia set. The 

closer c is to the border of the Mandelbrot Set, the thinner and whirlier the 

corresponding Julia set will be. If we choose a c further from the border, 

the respective Julia set will be thicker.  

• If we choose a c that is very close to the border of the Mandelbrot set, 

there will also be a close relation between the shape of the Julia set and 

the shape of the border of the Mandelbrot around said c – i.e. zooming in 

the Mandelbrot set around c will bring up shapes that look like the Julia set 

for c. 

 

For these reasons it is said that the Mandelbrot set is a "map" of all the Julia sets. 

If one were to have the time, one could create a computer program that shows 

an image of the Mandelbrot set and next to it an image of the Julia set - with c 

set to where the cursor is on the Mandelbrot set. This would demonstrate their 

relationship rather nicely. 

 

If we set c as the complex value –i we get the following image 

 

 
 

This is interesting as it is known that –i lies on the border of the Mandelbrot set: 

so this fits in with the deductions above. (This particular shape, like the Sierpinski 

Gasket, has a zero area and an infinite perimeter.) I find the complex nature of 

these shapes, and how the Mandelbrot set maps the Julia set, very interesting 

indeed, especially considering how simple their definitions are. 

12. Other Said Fractals 
In the Mandelbrot set, we square the value and add z. What happens if we cube 

it? 
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What about the fourth and fifth powers? 

 

  
 

Here notice how the shape tends to have n-1 ‘bulbs’ to it – this is quite strange 

and mindboggling, as the value of n affects the colour at only a pointwise level, 

so the fact that in can be seen in the general shape I find quite amazing indeed. 

 

This is the Manowar set, which uses zn = zn
2 + zn + c with a c parameter, in this 

case, of ¼(1-i): 
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In all of these cases infinitely complex shapes are being shown that have arisen 

directly from the simple formula given. Here we have an example of chaos 

theory: very simply defined objects portraying very complex behaviour. 

 

Though I shall not go into this in much detail, the dimension of all of these style 

of fractals are very close to 2 indeed – they are as wiggly as one can go without 

being flat. Calculating the Hausdorff dimension of this type of fractal is beyond 

the scope of this essay. 

 

All of the fractals in this section were created by a fractal program written by 

myself. I shall now explain my colour-generating function and a few other 

interesting details involved in my creation of said program. 

13. Creating the Fractals 
Clearly we need a mapping f above from integers to colours. The way I have done 

this in my program is by using what I referred to as a ‘palette’ – formally a 

palette is a subset of N × Co where N is the set of natural numbers (positive 

integers) and Co is the set of colours (a colour could be defined as an element of 

[0,1] × [0,1] × [0,1] representing the red, green and blue components 

respectively.) So we have a set of points and their representing colours, for 

example {(0,Black),(8,Red),(16,Blue),(32,Yellow),(64,White),(128,Purple)} is the 

palette for the images used in the preceding section – thus if a particular point 

required 16 iterations to escape out of D(2) it would be coloured blue. If the 

value is not available, the program interpolates – for example if it required 20 

iterations it would be coloured a slightly yellowy blue, or 12 iterations would give 

a purply colour. Another example palette is an arctic palette consisting of bluey 

colours: 
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this gives a Julia set looking like this: 

 

 
 

In addition in creating said fractals, the basic algorithm then would be to loop 

through each pixel (fundamental particle of colour on the image,) calculate its 

position on the complex plane, keep looping the sequence until the sequence 

tends to infinity, and colour the particle depending on whether it does and, if it 

does, how long it takes. However, there is something fundamentally impossible 

about the previous sentence, and therefore an extra level of complication is 
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required: Clearly it is impossible for a computer to test whether a given sequence 

of numbers tends to infinity just by looking at these numbers – or rather, the 

computer would take an infinite time to do so (due to the definition of a sequence 

tending to infinity.) Fortunately however, the following fact can now be revealed: 

• If in these fractals the value of |zn| exceeds two (2), it will never return within 

this circle.9 

This condition is explored with the Mandelbrot set in Priestley, Introduction to 

Complex Analysis, Exercise 3.16. Thus, we only need to test until the value 

exceeds 2. So we can definitely tell if a complex number z is not in the set, 

however, there is still a fundamental problem: we cannot test ‘for ever’ to check 

the sequence ‘always’ remains in D(0,2) (the disc centre the origin radius 2.) 

Thus we set some ‘maximum tries’ value M and if |zn| < 2 Mn ≤∀ then we 

assume (zn) does not tend to infinity. This then doesn’t give us the exact shape, 

however a high enough M will make it accurate enough given the given 

resolution, so a function could be used which takes the resolution R and from it 

calculates a minimal value of M which would give the exact shape given R. 

 

So the above algorithm is refined to 

 
For each pixel p on the screen 

Calculate position on complex plane 
While zn < 2 or n > M 

Increment n by one 
Colour the pixel p f(n) where f is the palette interpolation 
function. 

 

Note that this algorithm has complexity O(M×|p|) where |p| is the number of 

pixels. This is obviously quite large, explaining the length of time required to 

calculate the fractals.  

14. Hybrid fractals 

When I was experimenting with fractals of this variety, I noticed something 

remarkably remarkable. It is not dissimilar to the interesting observation earlier 

regarding the number of bulbs on the N-Mandelbrot sets. After a particularly 

inspired dog-walk, I found myself reasoning thus: What if we were to try to ‘mix’ 

two fractals on a fundamental level? Would the resulting image seem some kind 

of mixture of the two original images? 

 

Here we have the Mandelbrot set: 

 

 

                                           
9 This is the said reason as to why the fractals are coloured in the way described 

on previous pages. 



Keble Summer Essay : Introduction to Fractal Geometry 

Martin Churchill : Page 18 of 24 

 

Defined 

z0=z ; zn+1 = zn
2 + z 

 

And the Julia set with c=-i 

z0=z ; zn+1 = zn
2 - i 

 

 
 

Behold the following sequence zn 

z0=z ; zn+1 = zn
2 – i if n is even, zn+1 = zn

2 + z if n is odd. 

 

Curiously, we get the following shape: 

 

 
 

I find this very intriguing indeed: we combine the two formulae on a fundamental 

pointwise level and the image we get is something that looks like a mixture of the 

two fractals – a Julia shape with little bits of Mandelbrot in there. On exploring 

the idea, any time I “crossed” to fractals in the given way, the final image came 

out as a strange mixture of the two original fractals, with bits of each attached to 

a strange hyperfractal. 

 

I find this interesting, and it may, in some abstract way, relate to the previous 

exploration of the relationship between the Mandelbrot and Julia sets. However, 

on exploration I find that this strange phenomenon occurs also in other non-

Julia/Mandelbrot fractals. I have dubbed this concept ‘hybrid fractals’ and haven’t 
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seemed to be able to find any information on them on the internet, however, this 

doesn’t mean they’re not there. I imagine this idea has probably been explored 

before, though of course it may not have been… 

15. Aliens, Islands and Cacti 
Behold the following fractal: 

 
If we blur the boundary slightly, we can do something a bit special to it. Firstly if 

we add an extra dimension to it 

 

 
 

Then we can render it and do this: 



Keble Summer Essay : Introduction to Fractal Geometry 

Martin Churchill : Page 20 of 24 

 

 
 

And we have our Fractal Island. This type of method is used a reasonable in 

computer graphics, able to create weird and wacky things such as alien 

landscapes. The above example is simple, but as the complexity of the fractal 

increases we get images such as the following: 

 

 
 

This fractal, of the ‘self-similar’ variety described earlier, looks remarkably tree 

like. The following extract is from an article in Interface Magazine, 1990, and it 

describes the idea rather nicely: 

 



Keble Summer Essay : Introduction to Fractal Geometry 

Martin Churchill : Page 21 of 24 

“Computer graphics using CAD software is typically good at creating 

representations of man-made objects using primitives such as lines, rectangles, 

polygons, and curves in 2 D or boxes and surfaces in 3D. These geometric 

primitives and usual tools for manipulating them typically prove inadequate when 

it comes to representing most objects found in nature such as clouds, trees, 

veins, waves, and a clump of mud. There has been considerable interest recently 

in chaos theory and fractal geometry as we find that many processes in the world 

can be accurately described using that theory. The computer graphics industry is 

rapidly incorporating these techniques to generate stunningly beautiful images as 

well as realistic natural looking structures.” 

 

It takes just a few bytes of data to store the code to generate the following 

pattern: 

 

 
 

And it seems to make a lot more sense for computer graphics designers to store 

the relatively small amount of data it takes to create these images than the 

images themselves. 

 

The following function 

zn+1 = sin(zn
2) + c  

Gives rise to a biological image: 
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In which, with a bit of imagination, we have a pool of alien life… 

 

And  

zn+1 = u zn(1 - zn). 

With u = -0.7 + 0.8I gives us a galaxy for them to live: 

 
This certainly paves the way for a new art form, discovering and developing 

images based on the formulas that create them. 

 

Here we have a burning ship: 
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And, of course, this section would not be complete without the obligatory cactus, 

as so teasingly promised in the title of this chapter: 

 

 

16. Conclusion 

This hereby concludes are trip through Fractaldom. I have explored the concept 

of fractals, infinitely complex shapes generated from simple patterns and 

formulae (comparisons to Chaos theory here are very welcome.) I have largely 

looked at a vague outline of what may be going on: it certainly would be an 
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interesting endeavour to explore some of these ideas in far more rigour. We have 

looked at quite a simple well-defined way of doing this through self-similarity, 

then moved onto more complex types of fractals that are nonetheless 

straightforward to define. Briefly, I have discussed how I implemented creating 

said fractals, and concluded with a few ‘special’ topics such as looking at hybrid 

fractals and cacti, the later case showing how the idea of fractal images are 

finding there way into computer graphics (fundamentally, the way interesting 

images can be created in reasonably simple ways.) I believe this gives a nice way 

showing how some of these fractals are being used ‘in the real world’ (lit: outside 

mathematical curiosity) and therefore perhaps gives a nice way to conclude this 

outlining exploration of some of the ideas within fractal geometry. 

 

 


