
Categorical Semantics for a Quantum Language∗

Martin Churchill
Joint Work with Samson Abramsky

July 21, 2010

Abstract

We prove a correspondence theorem for a quantum programming lan-
guage in an axiomatic (categorical) setting. We present a simple while-
based programming language for a machine that has access to Quantum
Systems (in particular a system of qubits) and the relevant operations on
them. We give (coinciding) operational and denotational semantics for
this language at a concrete level (Hilbert spaces and linear maps) and
then proceed to do so at a more abstract categorical level, using ideas
from [AC04] and [Sel07].

1 Introduction

Quantum Mechanics has traditionally been axiomatised in terms of Hilbert
Spaces (a qubit can be represented by a pair of complex numbers up to non-
zero multiple — a ray in the space C2). Combination of systems results in the
possibility of quantum entanglement, modelled by the tensor product. In recent
years, it has been noticed that the structure required for reasoning about quan-
tum systems can be reduced to a small number of categorical axioms. Thus
in [AC04] Abramsky and Coecke recast Quantum Mechanics into a new light
— we no longer need a Hilbert Space, but something weaker: a certain type
of category that happens to support the quantum features we require (and in
particular, the category of sets and relations also admit these features).

Within this new framework, many derived concepts from Quantum Mechan-
ics (and general Linear Algebra) are definable. For example, it is possible to
define and prove the teleportation protocol at this level of abstraction [AC04].
Further, this new formulation directly gives rise to a graphical calculus, i.e. a
typed high-level way of reasoning about quantum computation; something that
was very much missing (and missed) in Quantum Mechanics of the 20th century.
These “grapical” proofs have a formal foundation [JS91, Sel04a]. The funda-
mental two-dimensionality comes from the orthogonal notions of composition
(time) and tensor product (space).

The graphical calculus attempts to address the problem of a lack of high-level
quantum formulation. This issue certainly needs addressing — development
of quantum algorithms tends to depend on mathematical tricks and hacking

∗This is a short writeup of the main result from my masters thesis, supervised by Samson
Abramsky. Perhaps this will eventually be submitted somewhere.

1

matrices. As such, development of quantum algorithms has been ad hoc and
rare. Another way of dealing with this is by considering programming languages
for quantum systems. One successful endeavour in this area has been the work
of Peter Selinger — in [Sel04b] a quantum language is presented, along with
some (denotational) semantics for that language in terms of Hilbert spaces. For
a review of the status of quantum programming languages, see [Sel04a]. Here we
consider a simple while-based language presented in [Abr04]. We shall unify the
concrete exposition of this language with the categorical axiomatics of [AC04].
We firstly present the concrete version of the language and its semantics; and
then generalise to the categorical setting. We will do this both operationally
and denotationally, and give a correspondence result between the two. As far
as we know, this is the first result of this kind using the axiomatic, categorical
approach to quantum mechanics.

The language in question is a simple while language for a classical com-
puter with access to quantum systems and quantum operations. This language
consists of imperative constructs — sequencing, iteration and conditioning —
together with commands for updating the classical state space, and applying
quantum operations to the qubits (including measurement, leaving the result in
a classical register).

2 A Quantum Language

2.1 QRAM Machines

We briefly recall some quantum formalisms. The quantum state of a particle
can be represented as a point on a sphere. This corresponds to a pair of complex
numbers up to non-zero complex multiple, i.e. a ray in a two-dimensional Hilbert
space. This can be generalised to multiple qubits and so we define the state space
of a quantum system to be a finite-dimensional Hilbert space H. A state within
this state space corresponds to a ray (i.e. a one dimensional subspace) of H,
typically represented by a vector of unit norm.

So the state of a qubit (as a base case for quantum system) can be represented
by a ray in C2. To combine to quantum systems we use the tensor product of the
two Hilbert spaces (rather than the direct sum/product of the space sets). This
is a key component of the quantum exponential speed-up — since the dimensions
grow exponentially rather than linearly as further systems are added.

We cannot read and write to quantum bits arbitrarily. The only operations
we can perform on quantum systems are unitary ones (adjoint = inverse). In
the qubit case, this corresponds precisely to rotations. In particular all of these
operations are invertible.

For reading qubits, we must perform quantum measurements. Given some
qubit q in state α0|0〉+α1|1〉 (for α0, α1 ∈ C) we can choose to ask the question
of whether the state of q is |0〉 or |1〉 (of course, it may be in neither). We will
get answer to this (by measuring the qubit) that will be either a |0〉 or |1〉, and
which it is will depend probabilistically on whether the state of q is “closer” to
being in state |0〉 or |1〉. This closeness measure is performed using the inner
product, which in the case of qubits on the surface of a sphere gives the intuitive
result. Furthermore, if the result of the measurement was that the state is closer
to |0〉 than |1〉, the state of q will become |0〉, and vice versa. Thus the act of

2

measuring the qubit destroys the state of the qubit. We can generalise this,
measuring the state of the system with respect to any basis. Given each vector
in the basis bi the state of the system becomes bi with probability 〈bi|q〉 (making
use here of the inner product,) we are informed of the resultant state.

So quantum systems are inherently different to classical systems — they
have a continuous state space, that exponentially grows, but we can’t read
them as we’d ideally like to and without strange consequence. This is what
makes writing quantum algorithms hard as mentioned above, and why devel-
oping quantum algorithms is akin to ‘hacking around with complex numbers’.
We define a QRAM machine to be a classical machine together with access to
a quantum system — that is, some number of qubits and the ability to perform
the operations described on them, as in [Sel04a]. We next briefly describe a
basic procedural scripting-language around these quantum operations.

2.2 An Imperative Language

We define a programming language for a computer that has access to some
number of quantum bits, and that can perform the above operations on those
qubits. We assume a syntax of arithmetic expressions aexp, Boolean expressions
bexp, unitary quantum primitives uni; as well as quantum and classical program
variables qvar and var. It can be shown that from some small basis of binary
unitary operators we can define all unitary operators, and that we only need to
be able to measure with respect to a standard basis to be able to measure with
respect to any [NC00]. Hence, restricting unitaries to those available in uni and
measurements to the computational basis does not restrict expressivity.

We then define the syntax of commands as follows:

C ::= var := aexp | skip | C1;C2 | if bexp then C1 else C2 | while bexp do C
| apply uni to qvar, qvar | measure qvar in var

Before giving categorical semantics for this language, we first briefly consider
concrete operational and denotational semantics. Let L be the set of values that
a variable can store, and S be the set of mappings from var into L — our classical
state space. We assume a QRAM machine of k qubits, and our quantum state
space H will be given by the Hilbert space Q⊗k = Q⊗ . . .⊗Q where Q is our
qubit space C2. We can consider a basis for H given by the set of binary strings
of length k, and if b is such a string we will write |b〉 for the corresponding basis
vector. Configurations are triples (C, s, φ) where C is a command, s ∈ S and φ
is a ray in H.

We define a reduction relation on configurations, but since this reduction
relation is probabilistic (due to quantum measurements) each reduction must
be assigned a probability p — we write (C, s, φ) →p (C ′, s′, φ′). We will have
a further coherence condition stating that if (C, s, φ) reduces to one of many
possibilities, the probabilities add up to (at most) one. We also require that the
nondeterminism is countable, i.e. each configuration reduces to only countably
many configurations (this is clearly true of the reduction relation below). We
assume “primitive” semantics for aexps JeK : S → L, bexps JbK : S → {tt,ff} and
unis JUK : Q ⊗ Q → Q ⊗ Q where S is our set of classical configurations. We
give our reduction relation as follows:

3

(v := e, s, φ) →1 (skip, s[v 7→ JeK(s)], φ)

(skip;C, s, φ) →1 (C, s, φ)

(C1, s, φ) →p (C ′1, s′, φ′)

(C1; C2, s, φ) →p (C ′1; C2, s′, φ′)

JbK(s) = tt

(if b then C1 else C2, s, φ) → (C1, s, φ)

JbK(s) = ff

(if b then C1 else C2, s, φ) → (C2, s, φ)

JbK(s) = tt

(while b do C, s, φ) → (C; while b do C, s, φ)

JbK(s) = ff

(while b do C, s, φ) → (skip, s, φ)

(apply U to q1, q2, s, φ) → (skip,s,JUKi,j(φ))

(measure q in v, s, φ) →pq0(φ) (skip, s[v 7→ 0], P q0 (φ))

(measure q in v, s, φ) →pq1(φ) (skip, s[v 7→ 1], P q1 (φ))

Here for each quantum state φ ∈ Qk with φ = Σαb|b〉 we define pij(φ) =

Σ
{
|αb|2 : bi = j

}
and P ij (φ) = 1√

pij
.Σ {αb|b〉 : bi = j}. Thus pij(φ) is the prob-

ability that we will get the result j on measuring the ith qubit in state φ and
P ij (φ) is the collapsed state that will result from such a measurement. If U is
a unitary, we define JUKi,j to be the operation H → H applying JUK to qubits
i and j (so this is of the form σ−1 ◦ id ⊗ U ◦ σ for an appropriate symmetry
isomorphism σ).

Define DProb(A) to be the set of discrete probability sub-distributions on A,
i.e. mappings p : A→ [0, 1] such that dp = {b ∈ A : p(b) 6= 0} is countable with
Σa∈dpp(a) ≤ 1. Given any command C we define the operational meaning of
that command O(C) as a function S ×H → DProb(S ×H). Given a command
C together with (s, φ) ∈ S ×H we can construct a reduction tree starting from
(C, s, φ) in the obvious manner. To find the resulting distribution on S × H
we set all probabilities to zero except those that exist as a leaf at the base
of the reduction tree. These configuration will be precisely those of the form
(skip, s′, φ′). For such leaves, with (C, s, φ) →p1 . . . →pn (skip, s′, φ′) their
probability in the distribution will be Πpi. If the configuration (skip, s′, φ′)
exists as multiple leaves in the reduction tree, the sum of the associated proba-
bilities is taken.

As well as defining the operational semantics we can directly define a compo-
sitional denotational semantics by giving meanings of commands C directly as
D(C) : S ×H → DProb(S ×H). Given f : A→ B we define f̂ : A→ DProb(B)

4

Table 1: Concrete Semantics

DJskipK = îd

DJv := eK = f̂ where f = λ(s, φ).(s[v 7→ JeK(s)], φ)

DJC1;C2K(s, s′′) = Σs′(DJC1K(s, s′).DJC2K(s′, s′′))

DJif b then C1 else C2K(s, φ) = if JbK(s) = tt then DJC1K(s, φ) else DJC2K(s, φ)

DJwhile b do CK = lfp[λf : S ×H → DProb(S ×H).λ(s, φ) : S.

ifJbK(s) = tt then (DJCK; f)(s, φ) else îd(s, φ)]

DJapply U to q1, q2K(s, φ)(s′, φ′) =

{
1 if s = s′ ∧ φ′ = Ui,j(φ)
0 otherwise

DJmeasure q in vK(s, φ)(s′, φ′) =

 pq0(φ) if s′ = s [v 7→ 0] ∧ φ′ = P q0 (φ)
pq1(φ) if s′ = s [v 7→ 1] ∧ φ′ = P q1 (φ)
0 otherwise

in the obvious manner with f̂(a) having precisely one nonzero probability at
f(a) whose probability is 1. We define D(C) in table 1.

In the while case, we note that DProb(A) can be made into a domain with
functions ordered pointwise in the obvious manner (thus a probability of 0 is
the undefined element). This justifies our fixpoint construction. Note that there
are some (potentially) infinite sums in the above descriptions, but we can use
countability to define them and boundedness to justify their convergence. We
prove the following in [Chu07]:

Proposition 2.1 For any command C, O(C) = D(C).

2.3 Example: Quantum Teleportation

We can give an example of a program expressed in this language. We can express
the protocol for quantum teleportation locally, which can be seen as moving the
value (status) of one quantum variable a (qubit) to the status of another b. To
do this, one needs an extra qubit c. The algorithm is as follows [BBC+93]:

• Set b and c to be jointly in the state |00〉+ |11〉

• Measure a and b with respect to the Bell basis (this destroys the state of
a).

• Depending on one of the four results, apply a unitary to c.

It is well known that this sets the state of c to the original state of a. This
algorithm can be represented as a program in this quantum language. We
describe how each of the above three steps can be implemented.

For the first, we assume that the matrix UB given by
1 1 0 0
0 0 1 −1
0 0 1 −1
1 −1 0 0

5

is one of our unitaries. We then note that |00〉+ |11〉 = UB(|00〉) and so reduce
the problem of setting b and c to |00〉, i.e. each of b and c to |0〉. This is possible
by performing a (computational base) measurement, and in the case of resulting
in |1〉 applying a rotation matrix R sending |1〉 to |0〉.

We then measure a and b with respect to the Bell basis. It is sufficient to
use UB to perform a change of basis and measure in the computational base.
So we can apply U†B to a and b, then measure (leaving the results in v1 and
v2, then apply UB to a and b. This is actually two measurements (of a and
b respectively) leaving us in one of four states depending on the values of v1
and v2. We then apply one of four different operators to b depending on the
values of v1 and v2 using the conditional. We assume each of these rotations
are available in our set of unitaries; if not it will be possible to construct them.

So the complete program is

measure b in v1; if v1 = 1 then apply rot180 to b;
measure c in v1; if v1 = 1 then apply rot180 to c;
apply U†B to a, b;
measure a in v1; measure b in v2;
apply UB to a, b;
if v1 = 0 and v2 = 0 then apply U00 to c else skip;

if v1 = 0 and v2 = 1 then apply U01 to c else skip;

if v1 = 1 and v2 = 0 then apply U10 to c else skip;

if v1 = 1 and v2 = 1 then apply U11 to c else skip

The semantics of this program gives the correct “quantum teleportation”
behaviour, by expanding its semantics and standard reasoning. In [Chu07] we
perform a more detailed analysis for the Deutch-Josza algorithm (and with
respect to the categorical categorical semantics presented below).

3 Categorical Semantics

3.1 Semantic Preliminaries

We now define the semantics of the language with respect to the categorical
formulation of quantum mechanics developed in [AC04]. In particular quan-
tum mechanics can be formulated in any strongly compact closed category with
biproducts, of which the usual FdHilb is an example (another is the category
Rel). The following definition is given in [AC05]:

Definition A strongly compact closed category with biproducts (SCCCB) is a
symmetric monoidal category (writing σA,B for the symmetry isomorphism A⊗
B ∼= B ⊗ A) equipped with: A monoidal involutive assignment A 7→ A∗ on
objects; an identity-on-objects, contravariant, monoidal, involutive functor f 7→
f†; and a unit εA : I → A∗⊗A with εA∗ = σA∗,A◦εA; and a biproduct structure;

such that (ε†A ◦ σA,A∗ ⊗ idA) ◦ (idA ⊗ εA) = idA; πi = q†i for the biproducts; and
also such that the symmetric monoidal natural isomorphisms are unitary with
respect to †.

In order to define the semantics of our language we will need some Cartesian
constructs. An SCCCB does indeed come with a product structure, but since

6

this also corresponds with the coproduct structure it does not suit our purposes.
At this stage we make the assumption that our classical machine has a finite
number n of registers, each of which can contain only finite m values. The
classical value space then is given as a function n → m (here identifying m
with the set {0, . . . ,m − 1}). In an SCCCB, given an object A we define k.A
as A⊕k using the biproduct structure (in particular using it as a coproduct).
We then define our classical state space as mn.I where I is the monoidal unit.
Distributivity isomorphisms are present in any SCCCB, giving an isomorphism
a.A⊗ b.A ∼= ab.A.

Definition Given any SCCCB C we can construct the classical subcategory of
C with objects of type I ⊕ . . . ⊕ I and arrows n.I → m.I are those defined
from a function f : {1 . . . n} → {1 . . .m} in the obvious manner (permuting the
coproduct possibilities, i.e. arrows [qf(1), . . . , qf(n)]).

Proposition 3.1 This subcategory is distributive — that is, it has a terminal
object, products and weak coproducts. Further, the canonical map [id×q1, id×q2] :
(A × B) + (A × C) → A × (B + C) has a left inverse dist : A × (B + C) →
(A×B) + (A×B) so that dist.[id× q1, id× q2] = id.

We need to address how to represent DProb(S × H) as an object in our
category. We can use mn.I to represent S using the classical subcategory. To
represent a qubit, we define the qubit space Q = I ⊕ I where I is the monoidal
unit (in FdHilb, this is the one-dimensional Hilbert space C). H is given by
the combined space of k qubits, and is given by the object H = Q⊗k. Thus the
compound system representing our combined classical/quantum components is
given by X = H ⊗ S. Note that this is mn.I ⊗ H ∼= mn.H (again using
distributivity) and so this can also be viewed as the mn-fold coproduct of H.
This is explicitly representing the quantum data + classical control paradigm
[Sel04b] since the classical control is determined entirely by which of the mn

components of the coproduct we are in, and then in each component we have a
space H representing the quantum part of the structure. However, we in fact
need to deal with probability distributions over states.

Since we have only a finite number (mn) of classical states, an element of
DProb(S×H) can be represented as mn sub-distributions on H. Thus, we need
only then deal with a categorical representation of probability distributions on
H. It is well known in the literature that a probability distribution on a Hilbert
space H can be represented as a mixed state i.e. a ray in H ⊗ H∗. Given a
pure state u in H the corresponding mixed state is represented by u ⊗ ū —
this looses no information, and we can then use weighted sums to represent
probability distributions over these pure states [NC00]. We can also extend this
functorially, mapping operators to the corresponding operators on the mixed
state space.

It is possible to lift these ideas to our abstract setting, following ideas in
[Sel07]. Given an SCCCB C we define CPM(C) to be a category with objects
from C, but morphisms A→ B in CPM(C) are given by arrows A⊗A∗ → B⊗B∗
in C. It is known that CPM(C) is also an strongly compact closed category,
but it does not inherit the biproducts from C. It is, however, monoid-enriched
(by +, inherited from the biproducts in C) — and we can define the biproduct
completion (−)⊕ of a monoid-enriched category, where arrows are given by
matrices [Sel07]. Thus we will give our semantics in the SCCCB CPM(C)⊕.

7

We can define a functor F : C → CPM(C) taking an object H to H ⊗H∗ with
F (h) = h⊗ h∗.

Given an SCCCB C we define our qubit space Q = I ⊕ I in C and derive H
from Q as above. We then work in CPM(C)⊕ where (probability distributions
over) our quantum space is represented by 〈H〉 and the biproducts used for our
classical state (as above) are the free biproducts. Thus DProb(S × H) will be
represented by mn.F (H).

3.2 Denotational Semantics

We now present the categorical axioms required to give corresponding denota-
tional and operational semantics for our language above. We recall that the
biproducts give us an addition monoid (0,+) on hom-sets. A scalar is an en-
domorphism on the monoidal unit, and such a scalar s is positive if it can be
factorised into h ◦ h†. We can define multiplication of arrow s by scalar λ,
denoted λ • s.

Definition A pre-quantum recursive category is a strongly compact closed cat-
egory C with biproducts such that CPM(C) is cpo-enriched. We require that
composition and addition are continuous with respect to this ordering and that
0 = ⊥. We further require that the nonzero positive scalars are closed under
addition, multiplication (composition), inverses and square roots. Finally we
require that addition and multiplication are monotonic with respect to v on
the positive scalars.

Note that the scalars in CPM(C) correspond precisely to the scalars in C,
and to scalars in CPM(C)⊕. If s is a scalar in C then F (s) is a positive scalar in
CPM(C). This “squares” s. However we can also embed s in CPM(C) directly
since I ⊗ I∗ ∼= I. We write G(s) for such a scalar, and can show that if s is
positive then G(s) is a completely positive arrow, so exists in CPM(C) [Chu07].
We extend the cpo structure on CPM(C) to CPM(C)⊕ by componentwise
comparison of arrows. We can show that addition, composition, multiplication
etc are continuous in CPM(C)⊕.

We have called the above a pre-quantum recursive category because although
Rel is an instance, FdHilb is not. For this we require some weakening, but
that requires some further work which we will tackle after giving full semantics
for our language in a PQRC and showing that they correspond.

We will give meaning to any command as an arrow X → X in CPM(C)⊕
where X = mn.F (H) using the free biproducts (here we identify C as a full sub-
category of C⊕). H is defined (in the PQRC C) as Q⊗k where k is the number of
qubits and Q is the qubit space I ⊕ I (here using biproducts in C itself). Since
X = nm.F (H) we know X ∼= S⊗F (H) where S = mn.I and so (if we so desire)
we can write an arrow X → X as f⊗g where f : S → S and g : F (H)→ F (H).
We now give denotational semantics as such arrows.

DJskipK = idX
DJC1; C2K = DJC2K ◦ DJC1K

Let V = I⊗m, i.e. the classical value space of an individual register. Given a
variable v ∈ n and a classical e : S → V (i.e. e is in the canonical classical

8

subcategory) we define the update map [v 7→ e] : S → S as follows (pR and sv
will be defined below).

S
∆S- S ⊗S

sv ⊗ e- S ⊗V

S �
(sv)

−1
S

id⊗n ⊗ pR

?

Here we firstly clone the classical information with ∆S : S → S ⊗ S. We then
apply id⊗ e taking us to S ⊗ V , the old state space and the new variable. We
then apply sV ⊗ id, rearranging the old state space so that the variable we wish
to alter is last (sV is the unique symmetry isomorphism permuting the vth
and final components of S = V ⊗n). We then apply id ⊗ . . . ⊗ id ⊗ pR where
f : V ⊗ V → V is the right projection, forgetting the old value and keeping the
new one.

We have used cloning (∆S : S → S⊗S) and projection operators. This only
works as a copying operation in the Cartesian classical category (which is where
we are currently working) — no such (natural) copying operator can possibly
exist in the full quantum category itself, see [Abr09].

We assume that any arithmetic expression e has a primitive (classical) de-
notation JeK : S → V , and define

DJv:=eK = [v 7→ JeK]⊗ idH

We next consider the conditional. Note that ⊕ is a coproduct, and we let
dist : X ⊗ (I ⊕ I) → X ⊕ X denote the natural distributivity isomorphism.
Once again we assume JbK : S → I ⊕ I as a primitive arrow. We can also define
∆ : X → X⊗S that copies the classical part of the composite state (see [Chu07]
for details).

DJif b then C1 else C2K = [C1, C2] ◦ dist ◦ (id⊗ JbK) ◦∆

We now move on to iteration. This we define using the coproduct structure and
cpo-enrichment in the expected way:

DJwhile b do CK = lfp[λf : X → X.([f ◦ DJCK, id] ◦ dist ◦ (id⊗ JbK).∆]

Finally we deal with the quantum cases. Given each binary unitary U we as-
sume a primitive denotation JUK : Q ⊗ Q → Q ⊗ Q We then define appu,x,y
to be the result of applying JUK at positions x and y, i.e. if σx,y is the unique
monoidal isomorphism Q⊗k → Q⊗k that sends the xth qubit to location 1 and
the yth qubit to location 2, appu,x,y = σ−1 ◦ (JUK⊗ idQk−2) ◦ σ.

DJapply u in q1, q2K = id⊗ F (appu,q1,q2)

And for the measurement case, we define P ij : H → H in C as the arrow ap-
plying qj .πj : Q → Q to the ith qubit in parallel with identity operations on

9

the other qubit, in a similar manner to applying unitaries. A striking fact here
is that we do not deal with the probability scalings, neither do we deal with
normalisation of the resulting quantum states. This is because these two op-
erations are inverses in our structure. This is fortunate indeed — representing
normalisation from inside our category would involve calculating square roots,
which would be a problem since everything is linear. An alternative perspective
here is that we aren’t normalising to 1, but rather to the probability at this
point in the evaluation tree, cf. [Sel04b].

DJmeasure q in vK = ([v 7→ 0]⊗ F (P q0)) + ([v 7→ 1]⊗ F (P q1))

This completes our definition of DJCK. It will be useful to define D′JCK :
CPM(C)⊕(I, S) × C(I,H) → CPM(C)⊕(I,X) by D′JCK(s, φ) = DJCK ◦ (s ⊗
F (φ)), taking a classical arrow and a quantum state and returning the resulting
probability distribution after C is applied.

3.3 Operational Semantics

We now give operational semantics in this setting. A configuration is a combi-
nation (C, s, φ) where s : I → S is a classical arrow (i.e. qi for some i ≤ km)
in CPM(C)⊕, and φ : I → H in the category C. Thus s and φ represents
“elements” of the respective objects.

Once again we define a one-step relation→ between configurations, with each
relation tagged with a probability, i.e. a positive scalar I → I in the category C.
Also it once again must be the case that the trees generated from this relation
are finitely branching, and indeed they are — our reduction rules are as follows:

(v := e, s, φ) →1 (skip, [v 7→ JeK] ◦ s, φ)

(skip;C, s, φ) →1 (C, s, φ)

(C1, s, φ) →p (C ′1, s′,φ′)

(C1; C2, s, φ) →p (C ′1; C2, s′, φ′)

JbK ◦ s = q1

(if b then C1 else C2, s, φ) →1 (C1, s, φ)

JbK ◦ s = q2

(if b then C1 else C2, s, φ) →1 (C2, s, φ)

JbK ◦ s = q1

(while b do C, s, φ) →1 (C; while b do C, s, φ)

JbK ◦ s = q2

(while b do C, s, φ) →1 (skip, s, φ)

(apply U to q1, q2, s, φ) →1 (skip, s, appu,q1,q2 ◦ φ)

10

measure q in v, s, φ) →pq0(φ)

(skip, [v 7→ 0] ◦ s,
√
pq0(φ)−1 • P 0

q ◦ φ)

measure q in v, s, φ) →pq1(φ)

(skip, [v 7→ 1] ◦ s,
√
pq1(φ)−1 • P 1

q ◦ φ)

Measurements work as follows: once again we define projections Pj : Q →
Q = qj .πj and extend this to P ij : H → H acting on qubit i in the natural way.

For φ : I → H we define the scalar pij(φ) to be φ†.P ij .φ. Finally we note that
the result of the measurement needs to be normalised, i.e. divided by the square
root of the probability as in the concrete case. We will embed the probabilities
into CPM(C) using G and will see that probabilities and normalisation cancel

out, since G(pij(φ)) ◦ F (
√
pij(φ)−1 • P ij ◦ φ) = F (P ij ◦ φ).

Once again by taking the reflexive transitive closure of our relation we obtain
reduction trees labeled with probabilities, looking exactly as in the concrete
semantics. We now need to use these operational semantics to form the semantic
function, as above. This is where we use the CPM construction, for creating
probabilistic weightings of states.

Given a command C and states s, s′ : I → S and φ, φ′ : I → H we de-
fine Comp(C, s, s′, φ, φ′) to be the set of all reductions (C, s, φ) →p1→ . . . →pn

(skip, s′, φ′) and given such a c ∈ Comp(C, s, s′, φ, φ′) we define p(c) to be Πpi
(note that multiplication of scalars p : I → I are commutative).

We then define

Prob(C) : CPM(C)⊕(I, S)×CPM(C)⊕(I, S)× C(I,H)× C(I,H)→
CPM(C)⊕(I, I)

by

Prob(C, s, s′, φ, φ′) = G(Σ {p(c)|c ∈ Comp(C, s, s′, φ, φ′)})

and

OJCK(s, φ) = Σs′,φ′(Prob(C, s, s′, φ, φ′) • (s′ ⊗ F (φ′))

using addition from the biproduct structure, summing over all (s′, φ′) such that
(C, s, φ) ~→(skip, s′, φ′). Note that if (C, s, φ) never terminates to any solution
this summation results in the zero distribution, i.e. the ⊥ element; and we can
use cpo-enrichment to calculate the infinite sums — details will be given below.
This gives us OJCK : CPM(C)⊕(I, S)×C(I,H)→ CPM(C)⊕(I,X).

Note that in passing from scalars in C to scalars in CPM(C) we embed via
G rather than F . This is because we do not wish to square the scalars, and it
allows normalisation and probability scalings to cancel out (as in [Sel04b]). We
can show that the probabilities with which we annotate are indeed positive, so
that G(s) is a valid completely positive arrow in CPM(C) [Chu07].

We now give a more precise account of O(C). Let Compn(C, s, s′, φ, φ′) be
the set of reduction paths from (C, s, φ) to (skip,s′,φ′) with at length at most n,
and if c is such a path we write p(c) for the probability weighting of that path,
i.e. the product of all of the probabilities along this path (given by composition
of scalars, which we know to be commutative and associative). We then define

11

OJCKn as a function from CPM(C)⊕(I, S) × C(I,H) → CPM(C)⊕(I,X). To
define this we firstly define

Probn(C, s, s′, φ, φ′) = G(Σ {p(c)|c ∈ Compn(C, s, s′, φ, φ′))

This sum is defined using the biproduct structure, and this is a finite sum since
the reduction tree we have will be a finitely branching one. We know that there
will only be finitely many s′, φ′ such that (C, s, φ) ~→(skip, s′, φ′) in at most n
steps. Hence we define

OJCKn(s, φ) = Σ {Probn(C, s, s′, φ, φ′) • (s′ ⊗ F (φ′))|(C, s, φ) ~→(skip, s′, φ′)}
summing over such (s′, φ′). We note that functions CPM(C)⊕(I, S)×C(I,H)→
CPM(C)⊕ form a complete partial order, with pointwise ordering (since our
underlying codomain hom-sets are cpo-enriched). Hence we define OJCK to be
the least upper bound of the chain (OJCKn)n (so OJCK(s, φ) =

⊔
(OJCKn(s, φ))).

We need to check that this is indeed a chain.
To do this, we need to show that OJCKn+1(s, φ) w OJCKn(s, φ). Since we

know that

Compn(C, s, s′, φ, φ′) ⊆ Compn+1(C, s, s′, φ, φ′)

this amounts to requiring that if p is a probability (arising from a product
of probabilities from the reduction tree) then a + p w p in the cpo-structure
ordering. Our monotonicity assumption of + guarantees this.

3.4 Correspondence

Proposition 3.2 For any command C, D′JCK(s, φ) = OJCK(s, φ) for all φ and
for classical s.

Proof Full details given in [Chu07] pp53-57 together with supporting lemmas.
In the case that C = skip we have D′JCK(s, φ) = DJCK ◦ (s ⊗ F (φ)) =

id.(s⊗F (φ)) = s⊗F (φ). Also (C, s, φ) ~→1(skip, s, φ) and so Comp(C, s, s′, φ, φ′)
is nonempty only if s = s′ and φ = φ′ and the set Comp(C, s, s, φ, φ) contains
a single empty computation branch whose probability is 1, the empty product.
As such Prob(s, s, φ, φ) = 1 = id and so OJCK(s) = 1.(s ⊗ F (φ)) = s ⊗ F (φ) =
D′JCK(s, φ) as required.

We secondly consider the case C = C1;C2. We need to show thatOJCK(s, φ) =
D′JCK(s, φ). By definition the right hand side is DJCK ◦ (s ⊗ F (φ)) = DJC2K ◦
DJC1K ◦ (s⊗ F (φ)) = DJC2K ◦ D′JC1K(s, φ) = DJC2K ◦ OJC1K(s, φ) by inductive
hypothesis. Hence it suffices to show that OJCK(s, φ) = DJC2K.OJC1K(s, φ).

Let (C1, s, φ) reduce to (skip, s1, φ1) . . . (skip, sn, φn) with probabilities p1 . . . pn
(note that this covers all cases since if (C1, s, φ) does not terminate then n = 0.
In this case our final probability is the empty sum 0, which coincides with
⊥). Then OJC1K(s, φ) = Σ(pi • (si ⊗ F (φi))). Hence our expression above is
DJC2K ◦Σ(pi • (si⊗F (φi))) which is Σ(pi •DJC2K ◦ (si⊗F (φi))) by distributiv-
ity and properties of scalars. This is Σ(pi • D′JC2K(si, φi)) which is once again
Σ(pi • OJC2K(si, φi)) by inductive hypothesis. Hence it suffices to show that
OJCK(s, φ) is this expression.

Well let (C2, si, φi) reduce to (skip, s1i, φ1i) . . . (skip, smii, φmii) with prob-
abilities p1i, . . . , pmii. We note that then by studying the operational semantics
that (C, s) reduces to

12

(s11, φ11) . . . , (sm11, φm11), . . . ,
(s1n, φ1n), . . . , (smnn, φmnn)

with probabilities

p11.p1, . . . , pm11.p1, . . . , p1n.pn, . . . , pmnn.pn

It follows then that OJCK(s, φ) = ΣΣpij • pj • (sij ⊗ F (φij). By definition, this
is Σ(pi • OJC2K(si, φi)) as required. The above can be extended to the infinite
case just using an infinite sum (using continuity together with finite distribu-
tivity to get infinite distributivity, etc).

In the case that C = v := e then we need to show that OJCK(s, φ) =
D′JCK(s, φ) = ([v 7→ JeK]⊗ id) ◦ (s⊗ F (φ)) = [v 7→ JeK] ◦ s⊗ F (φ). This clearly
holds since (C, s, φ) reduces only to (skip[v 7→ JeK] ◦ s, φ) with probability 1.

The case C = apply u to q1, q2 is similar. We need to show thatOJCK(s, φ) =
D′JCK(s, φ) = (id ⊗ F (appu,x,y)) ◦ (s ⊗ F (φ)) = s ⊗ F (appu,x,y) ◦ F (φ) =
s ⊗ F (appu,x,y ◦ φ). This does indeed hold again by definition of operational
semantics since (C, s, φ) reduces uniquely to (skip, s, appu,x,y ◦ φ)

We now consider measurement C = measure q in v. Firstly D′JCK(s, φ) =
Σj([v 7→ j] ⊗ F (P qj)) ◦ (s ⊗ F (φ)) = Σj([v 7→ j] ◦ s ⊗ F (P qj ◦ φ)). Secondly

OJCK(s, φ) = Σj(G(pqj(φ))•([v 7→ j]◦s⊗F (
√
pqj(φ)

−1
•P qj ◦φ))) = Σj(G(pqj(φ))•

([v 7→ j]◦s⊗F (
√
pqj(φ)

−1
)•F (P qj .φ))) = Σj(G(pqj(φ))•F (

√
pqj(φ)

−1
)•([v 7→ j] .s⊗

F (P qj .φ))). It remains only to show that G(pqj(φ)) • F (
√
pqj(φ))−1 = 1 (i.e.

that the probabilistic weight and the normalisation do indeed cancel out) and

in [Chu07] we show that G(s) = F (
√
s) and so G(pqj(φ)) • F (

√
pqj(φ))−1 =

F (
√
pqj(φ) • F (

√
pqj(φ))−1 = id, as required.

For conditional, we reduce the problem to showing that DJCK◦ (s⊗F (φ)) =
DJCiK ◦ (s⊗F (φ)). We show this by exploiting classical copying and coproduct
equations, naturality, distributivity etc. See [Chu07] for details.

For the while case we show separately that OJCK w D′JCK and OJCK v
D′JCK. To show the former we show that D′JCK is the least fixpoint of the
function g = λf.λ(s, φ). if JbK◦s = q1 then f(DJC1K◦ (s⊗F (φ))) else (s⊗F (φ))
and that OJCK is also a fixpoint. To show the latter, we demonstrate that for
all n there is some m such that OJCKn(s, φ) v (hm⊥)(s ⊗ F (φ)) where h is
the endofunction above (given in the definition of the while case denotational
semantics). From this it follows that for all n, OJCKn ≤ DJCK and so the limit
of the chain OJCKn is at most DJCK, i.e. precisely that OJCK v DJCK.

4 Categories of Superoperators

The above formulation requires the category CPM(C) to be cpo-enriched. While
the category Rel does satisfy this requirement, FdHilb does not. FdHilb is

13

only cpo-enriched when considering only trace-decreasing operators. For exam-
ple, the ordering given for FdHilb in [Sel04b] when restricted to positive scalars
gives the standard ordering positive scalars, which clearly does not admit least
upper bounds for arbitrary ω-chains.

Definition Any “element” in the CPM category I → A ⊗ A∗ can be written
as the lambda abstraction of a map A → A. Given such an s = Λ(f) then we
define tr(s) to be the scalar εA ◦ (idA∗ ⊗ f) ◦ ηA : I → I (by compact closure,
this is equal to εA ◦ s).

This coincides with treatment given in e.g. [Coe05]. Further details can be
found in e.g. [AC04] and we note that this is a direct abstraction of the linear
algebraic trace operator. We now generalise this to tuples of CPM-objects
using the free biproduct closure.

Definition Let f : I → A where A is some object in CPM(C)⊕. Then since
objects in CPM(C)⊕ are tuples 〈A1, . . . An〉 = A1 ⊕ ... ⊕ An, we have f =
〈f1, . . . , fn〉 with fi : I → Ai. Since Ai is an object in CPM(C) and so is of the
form X⊗X∗ we can take the trace of each fi. We then define tr(f) = Σ(tr(fi)).

Definition A map f : A→ B in CPM(C)⊕ is said to be trace-decreasing if for
any s : I → A we have tr(f ◦ s) v tr(s).

We note that trace-decreasing arrows are closed under composition etc. and
clearly the identity is trace decreasing.

Definition The category SUP(C)⊕ is the lluf subcategory of CPM(C)⊕ re-
stricted to trace-decreasing arrows (superoperators in the literature e.g. in [Sel04b]).

The notation may be slightly misleading here, since SUP(C)⊕ is not meant
to refer to the biproduct completion of SUP(C) (the category of completely
positive trace-decreasing maps — in fact this does not make sense, as SUP(C)⊕
is not necessarily closed under addition).

We now have identified three principal subcategories of CPM(C)⊕ of interest
— the canonical classical subcategory, the full subcategory CPM(C) of single-
tuple objects, and SUP(C)⊕. Our requirement, then, is that CPM(C) is order-
enriched as before, and that the derived ordering in CPM(C)⊕ is complete for
homsets of SUP(C)⊕.

Definition A quantum recursive category consists of a strongly compact closed
category C with biproducts with an order relation on CPM(C) that is complete
when extended to homsets of SUP(C)⊕. We require that composition and co-
pairing are continuous with respect to this ordering and 0 = ⊥. We also require
that the nonzero positive scalars are closed under addition, multiplication, in-
verses and square roots. Finally we require that addition and multiplication are
monotonic with respect to v on the positive scalars.

We can show that trace-decreasing completely positive maps are closed under
composition and we can show that trace-decreasing completely positive maps
are closed under copairing [Chu07].

Finally we note that any pre-quantum recursive category is also a quantum
recursive category, provided the limit of a chain of trace-decreasing arrows is
trace-decreasing.

14

We can now show that our semantics are still well-defined. Firstly we tackle
the denotational semantics — since our order completion now only applies to
superoperators we require that

Proposition 4.1 1. For any non-while command C, DJCK : X → X is trace
decreasing. 2. The function λf : X → X.([f ◦ DJCK, id] ◦ dist ◦ (id ⊗ JbK).∆ is
continuous and maps trace-decreasing arrows to trace-decreasing arrows.

This is shown in [Chu07]. For our operational semantics we also now require
that φ is normalised in our configurations, i.e. tr(F (φ)) = 1. We can then show
the following (see [Chu07] for details)

Proposition 4.2 If (C, s, φ)→ (C ′, s′, φ′) and φ is normalised, then so is φ′.

Proposition 4.3 pq0(φ) + pq1(φ) = 1

Proposition 4.4 tr(OJCKn(s, φ)) v 1.

Hence OJCKn(s, φ) is indeed trace-decreasing and so the infinite sum makes
sense as a limit of a cpo-process in the SUP(C)⊕ subcategory.

The proof of the correspondence theorem is largely unchanged for this version
of the semantics (of course now it is only valid for normalised φ) — the only
alteration is that the function g in the while case (for which D′JCK is the least
fixed point) is now an endofunction on the space CPM(C)⊕(I, S)×C(I,H)∗ →
SUP(C)⊕(I,X); where C(I,H)∗ consists of normalised φ in C(I,H).

4.1 Examples of Quantum Recursive Categories

To recall, we define our semantics in an SCCCB C such that CPM(C) is order-
enriched and this order is complete for SUP(C)⊕, satisfying some further laws
regarding interaction and scalars. We now need to check that these require-
ments are reasonable, which to us means that they are satisfied by FdHilb and
Rel.

Firstly to see that FdHilb provides a valid model, we appeal to results from
[Sel04b]. It is well-known that FdHilb is a strongly compact closed category
with biproducts. For the order relation on CPM(FdHilb) we use the Lowner
partial order on completely positive maps [Sel04b]. This states that A v B if
and only if B−A is a positive matrix. This is a partial order that has a bottom
element (which is 0 as we require) and in fact supports least upper bounds for
trace-decreasing completely positive maps. Furthermore, the inherited ordering
is complete for homsets of SUP(FdHilb)⊕ as we require — a proof of this is
given in [Sel04b], although using different notation (the Q of [Sel04b] is our
SUP(FdHilb)⊕). Composition and copairing are continuous.

We note that a scalar a is positive if it it can be expressed b.b†, i.e. if it
can be written in the form Σai.a

†
i for complex numbers ai. Scalars in FdHilb

are complex numbers, and the complex numbers expressible in this form are
precisely the positive reals. Thus the positive scalars are indeed the positive
real numbers. As such, positive (nonzero) scalars are closed under addition,
multiplication, inverses and square roots. Furthermore then for scalars b and a,
b − a is positive if and only if b ≥ a in the usual ordering on real numbers —

15

and so composition and addition are indeed monotonic. Note that the trace-
decreasing positive scalars are those in [0, 1] i.e. our valid concrete probabilities.

We can show that the categorical setting C = FdHilb coincide with the
concrete semantics given above (see [Chu07]).

We now show that Rel too satisfies our requirements. As mentioned, Rel
is a strongly compact closed category with biproducts. We need to endow
CPM(Rel) with an order-relation and show that is complete for trace-decreasing
maps. There is a natural ordering on homsets of Rel itself — namely set inclu-
sion. We can show that this partial order is a cpo on CPM(Rel). Further we
can show that

Proposition 4.5 ⊥ is completely positive and the union of a chain of com-
pletely positive relations is also completely positive.

So it seems that CPM(Rel) is complete as it is, and so we don’t in particular
need to consider trace decreasing operators. To check further conditions, we note
that ⊥ is indeed the zero map (i.e. the empty set) and composition and addition
is continuous (the sum of two arrows in Rel is their union).

A scalar in Rel is an arrow I → I, i.e. a relation between I and I, where
I = {∗}. There are two such relations — the empty relation and the relation
relating ∗ with ∗ — we shall label these 0 and 1 respectively. A relation is
positive if it is symmetric and partial reflexive (xRy ⇒ xRx) [Sel07]. Both
scalars 0 and 1 in Rel satisfy this property (0 satisfies both vacuously, and 1
is clearly both symmetric and reflexive). Thus the positive scalars are indeed
closed under addition. Likewise the scalars have square-roots (1 = 1.1, 0 = 0.0)
and also non-zero elements admit inverses (1 = 1.1). Finally, in the ordering
we have 1 A 0 and so addition and multiplication are indeed monotonic, since
1 + 1 = 1 and 1.1 = 1. So Rel is a pre-quantum recursive category.

5 Further Directions

The results described here are given in (much) more detail in Churchill’s mas-
ter’s thesis, Abstract Semantics for a Simple Quantum Programming Language
[Chu07]. In this thesis full proofs are given for all of the results. It also ex-
tends the work here by considering logical semantics — we define predicates on
the state space of our system and define a modal operator for programs, given
meaning by our denotational semantics. This logic can only reason about the
classical part of the system; but can hence indirectly reason about the quan-
tum part via the use of measurements. We also explore an abstract version of
the logical semantics using subobjects and pullbacks. In addition, we provide a
worked example (in the concrete case) of the Deutch-Josza algorithm and give
much more background information.

As mentioned in the original talk [Abr04] we could make the language slightly
more structured, introducing types etc, making the language more functional.
It is these typed languages that fit into ideas of category theory more easily,
and would perhaps give a different flavour to our language and its semantics.
Fundamentally, however, these semantics will still be the same: using the cpo-
enrichment for recursion, biproducts and CPM construction to represent the
spaces in general etc; it’s just effectively the values of k, m and n could be

16

varied. Of course, once this has been done, we could extend our ideas to other
programming language ideas: the main issue that our framework above does
not currently allow is that of infinite (classical) datatypes since we represent
our space by a finite biproduct.

The categories that we use to model our programs require stronger structure
than the basic SCCCBs (such as cpo-enrichment and its interaction with the
other features, as well as the logical semantic requirements). In [Chu07], we
have investigated to some degree which of the logical semantic requirements
follow automatically from the SCCCB structure; independence of all of our
requirements on the category could be a further area of study to investigate.

Our language deals with a single, independent quantum system. A further
area of research is the delicate interaction between quantum systems and ideas
of concurrency; and seeing if we can model these ideas into our language. Also,
from a practical point of view, we have assumed in the above very idealised
hardware and have assumed away realistically necessary ideas such as error-
correction. Seeing how these ideas fit into our framework could also be another
potential direction.

References

[Abr04] S. Abramsky. A cook’s tour of a simple quantum programming lan-
guage. Lecture slides, 2004.

[Abr09] S. Abramsky. No-Cloning In Categorical Quantum Mechanics. ArXiv
e-prints, October 2009.

[AC04] Samson Abramsky and Bob Coecke. A categorical semantics of quan-
tum protocols. Logic in Computer Science, Symposium on, 0:415–
425, 2004.

[AC05] Samson Abramsky and Bob Coecke. Abstract physical traces. Theory
and Applications of Categories, 14:111, 2005.

[BBC+93] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa,
Asher Peres, and William K. Wootters. Teleporting an unknown
quantum state via dual classical and einstein-podolsky-rosen chan-
nels. Phys. Rev. Lett., 70(13):1895–1899, Mar 1993.

[Chu07] M. Churchill. Abstract semantics for a simple quantum programming
language. Master’s Thesis, University of Oxford, October 2007.

[Coe05] B. Coecke. Kindergarten Quantum Mechanics. ArXiv Quantum
Physics e-prints, October 2005.

[JS91] A. Joyal and R. Street. Advances in mathematics. In The geometry
of the tensor calculus I, pages 55–112. Springer-Verlag, 1991.

[NC00] M. Nielsen and I. Chuang. Quantum computation and quantum
information, 2000.

[Sel04a] P. Selinger. A brief survey of quantum programming languages.
pages 61–69, 2004.

17

[Sel04b] P. Selinger. Towards a quantum programming language. Mathemat-
ical Structures in Computer Science, 14(04):527–586, 2004.

[Sel07] Peter Selinger. Dagger compact closed categories and completely
positive maps: (extended abstract). Electronic Notes in Theoretical
Computer Science, 170:139 – 163, 2007. Proceedings of the 3rd In-
ternational Workshop on Quantum Programming Languages (QPL
2005).

18

