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Abstract

Game semantics extends the Curry-Howard isomorphism to a three-way correspondence:

proofs, programs, strategies. But the universe of strategies goes beyond intuitionistic

logics and lambda calculus, to capture stateful programs. In this thesis we describe a

logical counterpart to this extension, in which proofs denote such strategies.

The system is expressive: it contains all of the connectives of Intuitionistic Linear

Logic, and first-order quantification. Use of a novel sequoid operator allows proofs with

imperative behaviour to be expressed. Thus, we can embed first-order Intuitionistic

Linear Logic into this system, Polarized Linear Logic, and an expressive imperative

total programming language. We can use the first-order structure to express properties

on the imperative programs.

The proof system has a tight connection with a simple game model, where games are

forests of plays. Formulas are modelled as games, and proofs as history-sensitive win-

ning strategies. We provide a strong full and faithful completeness result with respect to

this model: each finitary strategy is the denotation of a unique analytic (cut-free) proof.

Infinite strategies correspond to analytic proofs that are infinitely deep. Thus, we can

normalise proofs, via the semantics.

The proof system makes novel use of the fact that the sequoid operator allows the

exponential modality of linear logic to be expressed as a final coalgebra.

The work in this thesis has been presented in two conference papers, with my supervi-

sors:

• Martin Churchill and James Laird, A logic of sequentiality. In Anuj Dawar and

Helmut Veith, editors, Computer Science Logic, volume 6247 of Lecture Notes in

Computer Science, pages 215–229. Springer Berlin / Heidelberg, 2010. 10.1007/978-

3-642-15205-4-19. Based on the results in Chapter 2.

• Martin Churchill, James Laird, and Guy McCusker, Imperative programs as proofs

via game semantics. In Logic in Computer Science (LICS), 2011 26th Annual IEEE

Symposium on, pages 65 –74, June 2011. Based on the results in Chapters 3 and

4.
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Chapter 1

Introduction

In which we introduce the work of this thesis.

1.1 Motivation

The Curry-Howard isomorphism [34] is a powerful theoretical and practical principle for

specifying and reasoning about programs. It notes a striking correspondence between

proofs and programs, of a certain kind. In the best known presentation, the proofs are

those of intuitionistic logic, which correspond to typed functional programs. For example,

the product operation on types corresponds to conjunction on formulas — in both cases

to pairing. Thus, a program of type A×B is precisely a program of type A together with

a program of type B; and a proof of A∧B is precisely a proof of A together with a proof

of B. Similarly, implication corresponds to the function type constructor: modus ponens,

which concludes B from A and A ⇒ B, corresponds to function application; the cut rule

to composition. This correspondence can be extended to other type constructors, noting

a deep and precise connection between such proofs and programs.

The Curry-Howard correspondence can be extended to a third axis: denotational

semantics. Denotational semantics provides a meaning of a program/proof as a mathe-

matical object, e.g. a function, a relation, or (as we will see) a strategy. Fundamentally,

it is compositional in nature: the meaning of a program/proof is defined using the mean-

ing of its components. For example, if we wish to interpret proofs as sets and functions,

we might set JA ∧BK to be the set theoretic product of A and B; and JA ⇒ BK the set

of functions from A to B. Thus we translate syntactic operations into corresponding se-

mantic ones. Category theory provides an abstraction of the structure required to give a

semantic model of such logics and languages: for example, Cartesian Closed Categories



correspond to models of the implication-conjunction fragment of intuitionistic logic, and

the simply typed lambda calculus.

One way of giving denotational semantics to proofs and programs uses dialogue

games. In this setting, proofs and programs are modelled as interaction sequences —

dialogues between the environment and the term itself. One can construct Cartesian

Closed Categories of such games, and hence model the features described above. But the

categories contain richer structure. To start with, since one can control how often moves

are played, games can be used to model logics with finer control over resource usage,

such as linear logic [28]. Since the games models are intensional they can keep track of

how many times an argument to a function is interrogated.

Further, the flexibility of such games models has admitted a number of full com-

pleteness results which state that each inhabitant of the denotational semantics is the

interpretation of a proof/program [6]. Thus, the Curry-Howard correspondence extends

fully to the semantics also. We might ask: how can we make this correspondence an

isomorphism? A problem is that the mapping from proofs/programs to semantics is not

injective. For example, a proof/program might involve a cut/composition that could be

replaced by an appropriate substitution while preserving semantic meaning. Thus for

the isomorphism to truly hold, we will need somehow to identify a set of “normalised”

programs/proofs such that any two distinct elements are semantically distinct. This has

been called full and faithful completeness [6]. On the proof side, clearly our normal forms

must be cut-free, but this is not enough as there is often redundancy in other areas, e.g.

the order in which rules are applied. The technique of focusing [12] enforces further

discipline on proofs to help remove such redundancies.

One can also consider programs outside the purely functional setting. Examples in-

clude programs with mutable reference cells, concurrency and control effects such as

exceptions and continuations. We might ask how the above correspondence between

proofs, programs and semantics extends to such a setting. We can immediately address

one of these axes: game semantics has been successful in providing fully complete deno-

tational semantics for a range of such programming languages [5,7,9,10,32,35,44,51].

We may also enquire into the nature of the proofs-programs correspondence in such

a setting. Griffin noticed that the control operator callcc can be typed as Pierce’s law

((A → B) → A) → A: a formula that can be added to intuitionistic logic to yield classical

logic [30]. A computational calculus corresponding to classical logic was developed in [67]

based on this observation.

We can address the proofs-programs correspondence by using the programs-semantics

correspondence. We can model both intuitionistic proofs and stateful programs in the

same semantic framework. In particular, we can consider a model where games are



simple trees and operations on types/formulas correspond to combinatorial operations

on these trees. Programs/proofs are then represented as strategies for the two-player

game determined by the tree. Definability results [57] ensure that each finite strategy

corresponds to a program, but there are strategies (and hence programs) that do not

correspond to intuitionistic proofs. In [14], Blass identified a medial rule which is not

provable in Intuitionistic Linear Logic, but has an evident history-sensitive strategy.

We take the view that proof systems, as syntactic objects, should fundamentally re-

flect some natural semantic notion. Game semantics provides a natural interpretation

of the connectives of linear logic. In this thesis, we consider a particularly simple but

expressive games model, take this as a primitive, and seek the logic that best represents

its structure — including a proof of Blass’s medial rule, not provable in Intuitionistic

Linear Logic.

One line of attack is to extend Intuitionistic Linear Logic in such a way that all

(history-sensitive) strategies are definable. But we wish to do this in a harmonious man-

ner, ideally obtaining something like the full and faithful completeness result mentioned

above. If we can obtain a close correspondence between strategies and proofs, then we

can embed programs in the proof system by matching their strategy semantics. Fur-

ther, such a system will be of interest purely from the proofs-strategies perspective: the

games model we study is a simple and natural one, exhibits rich algebraic structure and

has been well studied [13,22,36,51,52,58].

In this thesis we introduce a logic of sequentiality, where proofs denote history-

sensitive strategies. This can be motivated from two angles, related as in the above

discussion:

• To provide a proof system where the computational content of a proof is a stateful

program

• To provide a proof system with a close semantic connection to a very simple games

model — full and faithful completeness.

The logic achieves this by using Laird’s sequoid operator ® [45] as a principle logical

connective. As will be seen, this connective and its dual will be enough to introduce the

imperative stateful behaviour: the other connectives are standard.

The proof system we obtain is expressive. Intuitionistic Linear Logic can be em-

bedded within it. The logic is not strictly linear, but affine — arguments without an

exponential can be used at most once. Our justification for this is that the simple games

model naturally models affine logic, and we take this semantics as a starting point. The

logic also contains first-order quantification, atoms and equality. The computational con-

tent of a proof is stateful, and we can embed an expressive total imperative programming



language into the logic. We can use this together with the first-order structure to spec-

ify properties on these programs. The logic also contains a cut-free subsystem in which

proofs are in some sense focused, and we will prove a full and faithful completeness

result with respect to the game semantics.

1.2 Background

1.2.1 Foundations

Games for Proofs

The notion of viewing a proof as a strategy goes back a long way. The basic metaphor

relates each proposition to a game between Verifier and Refuter — the job of Verifier is

to show that the proposition is true, and Refuter’s aim is to show that it is false. Thus,

if Verifier can win every possible play, this corresponds to a proof: since each possible

attempt to refute it fails. On the other hand, if there is a single way for Refuter to win,

then there is a flaw in Verifier’s argument, and the proposition is not proved. Thus, a

proof corresponds to a winning strategy for Verifier — a recipe that shows him how to

play, guaranteeing that he will win, however Refuter tries to outwit him.

This notion first appeared as Plato’s Socratic Dialogues [64], and later in the me-

dieval theory of obligationes [73]. It first appeared in its modern form in the work of

Lorenzen [60], who made the metaphor precise by showing how the connectives of logic

relate to corresponding constructions on games. For example:

• In the game A∧B, Refuter can choose to play in either A or B. Play then proceeds

as in the chosen game. Thus, to give a winning strategy on the game A∧B, Verifier

has to be able to cope with either of Refuter’s choices — he must have a winning

strategy for A together with a winning strategy for B.

• In the game A∨B, Verifier can choose to play in either A or B. Play then proceeds

as in the chosen game. Thus, to give a winning strategy on the game A∨B, Verifier

has to have a winning strategy for one or the other, at his choice.

• In the game A → B, Verifier plays as in B with access to an additional resource

A. That is, at a later date Verifier can chose to initiate a new game of A where

Refuter plays the rôle of A-verifier, and Verifier plays the rôle of A-refuter.

• In the game ¬A, Verifier must try to refute A, while Refuter must try to verify it.

• In the game ∀x.A(x), Refuter must chose a value v for x, and play proceeds as in

A(v). Thus, to give a winning strategy for ∀x.A(x), Verifier must be able to cope



with any choice that Refuter might make — he must have a winning strategy for

A(v) for each possible v.

In some of these cases it is already clear how these constructions correspond to proof

rules in logical systems — e.g. the first is an interpretation of the rule

` A ` B
` A∧B

where ` X represents a winning strategy for the game X .

The precise nature of the rules of the game and connections to formal proof systems

— in particular linear logic — was made by Blass in [14]. A distinction between the

multiplicative conjunction ⊗ and additive conjunction & can be made by varying whether

Refuter is allowed to switch between the components (⊗), or just choose once and for all

at the start (&). Given strategies on A → B and B → C one can compose them — but

in Blass’s formulation this composition is not associative, and so this does not yield a

category. The source of this problem is that in a particular game it may be the case

that both Refuter and Verifier have potential starting moves. One solution to this is to

introduce polarities, with positive and negative formulas corresponding to positive and

negative games, in which all starting moves exclusively belong to Verifier or Refuter

respectively [53].

As noted by Blass, there is a further problem with this model. The strategies of

Blass’s model are history-sensitive — the protagonists are allowed to use all of the mem-

ory at their disposal; the next move prescribed by a strategy is a function of the entire

history of play so far. Resultantly, there are strategies that are not the denotation of

any proof. For example, there is a history-sensitive strategy on each of the following

formulas:

[(A⊗B)O(C⊗D)]( [(AOC)⊗ (BOD)]

[A⊗ (C&D)]&[B⊗ (C&D)]&[(A&B)⊗C]&[(A&B)⊗D]( (A&B)⊗ (C&D)

These formulas are not provable in Intuitionistic Linear Logic. Thus, the interpretation

is not fully complete.

In [6], it was shown that the natural games model for multiplicative linear logic

is fully complete in this sense, if strategies make their decision based on only the last

move — if they are history-free. Since the game metaphor is a compelling semantics of

proofs, one might ask: can we enhance the underlying logics to be able to capture the

full unbounded memory of the protagonists?



Games for Programs

Games and strategies also yield fruitful models of programs. Given a program type T

we can consider its game interpretation JTK. In this game, Verifier plays the rôle of the

type T, and Refuter the rôle of the environment. Thus, if T is the type nat -> nat, a

typical play in the corresponding game might be

• Refuter (Environment) asks for the output value

• Verifier (System) asks for the input value

• Refuter (Environment) gives the value 5 as the input

• Verifier (System) gives the value 7 as the output

Thus, a strategy on this game represents instructions for the System protagonist, regard-

ing which moves it should play given the Environment moves so far. This corresponds to

a program of this type. For example, the above sequence could be a play in the strategy

representing the term λx.x+2 or λx.7.

For unification of terminology, we will now refer to the Refuter-Environment player

as Opponent and the Verifier-System player as Player.

An early use of this approach is the sequential algorithms model [13], later shown

to be equivalent to a games presentation [52] (as described in [22]). In this setting, a

fully abstract model of SPCF was given — this is a functional programming language

over the type of naturals with a catch control operator. Thus, we already leave the range

of the Curry-Howard isomorphism for intuitionistic logics: games can be used to model

more expressive structure than that found in purely functional languages.

1.2.2 The Intensional Hierarchy

In the early nineties, four parties [7, 35, 65, 66] provided fully abstract (i.e. optimally

precise) denotational models for the pure functional programming language PCF [69].

Three of these approaches used game semantics to do so. In the case of Hyland-Ong

game semantics [35], the games were played out over an underlying arena consisting

of a bipartite graph of Player- and Opponent- moves, together with further data such

as question-answer labelling. Rather than the arenas representing the games them-

selves, they instead represented an enabling relation which can be used to construct the

games. In particular, both protagonists would alternately play moves, provided the en-

abler of that move had been played sometime in the past by the other protagonist. The

strategies must satisfy certain constraints, such as innocence (the next move prescribed



Figure 1-1: Programming Languages and Hyland-Ong Games Models

IA (wb, vis) [8] - GenRef (wb) [5] - GenRef+callcc [45,46]

PCF (wb, inn) [35]

-

IA+catch (vis) [10]
-

SPCF (inn) [43]

-

-

IA+co(l-alt, af-ans) [51]
?

- IA+co+callcc (l-alt) [51]

6

Key: Language (strategy restrictions) [reference].
Arrow denotes language embedding / weakening of strategy restrictions.

by a strategy must depend only on a certain subsequence of the play so far) and well-

bracketing (moves played must satisfy a well-bracketing discipline with respect to the

question-answer labelling).

Moreover, the tools used to construct this model would prove to be flexible indeed:

by successively relaxing constraints on the games model in a natural way, languages

with more expressive operations can be modelled. An early example was that of ground

state, providing a model of Idealized Algol [8]. To obtain this model, it is sufficient to

simply remove the innocence condition on strategies, but keeping a weaker one, called

visibility. A ground cell can then be represented as the product of its read and write

methods. This work was particularly notable because this led to the first decidability

results on fragments of Idealized Algol [26], which has since led to the fruitful subfield

of algorithmic game semantics [4].

Another example was given in [43], which shown that by dropping the well-bracketing

condition a fully abstract model of SPCF is obtained: PCF together with a catch operator.

By dropping both well-bracketing and innocence but keeping visibility, we obtain a model

of Idealized Algol with local exceptions [10]. By dropping visibility as well, but keeping

two weaker conditions local alternation and affine-answering, we obtain a model of a

language with coroutines [51]. Dropping local alternation corresponds to adding higher-

order references [5]; and dropping affine answering corresponds to adding full first-class

continuations at all types [43, 45, 46]. Thus, the games models map out a rich semantic

landscape of control effects and state, as seen in Figure 1-1.

Other developments in game semantics include considering nondeterministic strate-

gies for concurrency [32] and using nominal set theory for modelling names and fresh-



ness, allowing fully abstract models of considerable subsets of ML [63].

One point in the above space is of particular interest to us. Recall that in the diagram

above as we proceed from left to right we are weakening the constraints on the strategies,

and the arena machinery was introduced precisely to make those constraints express-

ible. Thus, on the right hand side of this diagram, we find that the arena machinery is

not necessary at all: for example, the games we find in the IA+co setting correspond to

Curien-Lamarche games, or sequential algorithms [51]; and the games found in the Gen-

Ref+co to Conway games [19]. These models are strikingly simple — games are again

just trees of a certain form, combined compositionally. Despite this, they yield a lot of

algebraic structure, enough to model complex control and state operations. They will be

our principle object of study.

1.2.3 The Curien-Lamarche Games Model

We chose to take this notion of game as our primitive one, for the following reasons:

• It is strikingly simple. A finite game is just a forest of possible plays, and the con-

nectives on games correspond to compositional operations on these forests. Even

Opponent-Player labelling can be deduced by the level a node occurs in the forest.

This is in contrast to the (more liberal) Conway setting [21], where each node is

labelled with a Player/Opponent owner. Here, even though strategies must contain

alternating plays there are also non-alternating plays which are only observable

when the game is placed in some larger context.

• It has rich mathematical structure. Intuitionistic Linear Logic can be modelled

[14], as well as first-order state and coroutines [51].

• A strategy in any of the games models to the left of IA+co in the diagram above can

be embedded inside our games model by means of forgetting the extra structure.

• Arena game semantics can in fact be modelled inside this model using a permis-

sive backtracking exponential [31]. In particular, a space of innocent strategies

can be constructed using an appropriate Kleisli construction. Using a different

non-repetitive backtracking exponential, the fully abstract sequential algorithms

model of SPCF can also be expressed in this setting [52].

• There are other equivalent representations of this formalisation of game, including

locally Boolean domains [47], concrete data structures [13, 22] and graph games

[37].



• For these reasons, this model has been identified as worthy of study by Longley,

who has designed an object-oriented programming language based upon it [59].

Although full general references cannot be modelled using CL-games, a restricted

form can, which can be captured by a natural syntactic notion of argument-safety

[75].

We will seek a logic where formulas correspond to CL-games and proofs of a given

formula to history-sensitive strategies on the appropriate game. We wish the correspon-

dence to be as tight as possible: in particular, we will seek full and faithful completeness.

1.2.4 The Sequoidal Operator

A categorical, axiomatic model of a language with higher-order state was given in [45].

The crux of the structure is a new sequoid operator ®, the algebraic properties of which

reflect the sequential nature of game semantics. The games model in [5] is an instance

of this categorical model. The sequoid operation has since been used to give categorical

models to other languages in the intensional hierarchy, such as IA+co for which Curien-

Lamarche games provide an instance [51].

Concretely, a play in M®N is a play in M⊗N that starts in M (Opponent may later

switch between M and N). The operator has pleasant algebraic properties: to start

with, it provides an action of the monoidal category of games C on its strict subcategory

Cs, and distributes over the product. Moreover, it allows a decomposition of the tensor

operation, with M ⊗ N = (M ® N)× (N ® M). There is an adjunction Cs(A,B ( C) ∼=
Cs(A®B,C).

In the setting of Conway games, further properties hold including an adjunction

Cs(A ( B,C) ∼= Cs(B,C ® A) [45]. It turns out that such properties are sufficient to

identify fully abstract models of a language with general references.

In the setting of Curien-Lamarche games, different properties hold: in particular

linear functional extensionality [51]. Once again, this additional property is sufficient to

identify fully abstract models of the coroutines language. Thus, just as constraints on

the underlying arena models allow us to capture expressivity of games languages, so can

the algebraic properties of the sequoid operator. This line of enquiry has continued in

recent work [50].

The sequoidal operator and its algebraic properties are principal to the logic we will

present here. It is the only non-standard connective in the logic, but using it we can

represent proof rules with history-sensitive behaviour, and thus unlock access to the

entire set of strategies available in our games model. The connective will be principal in

the sense that the interpretation of the structural connective comma will be the sequoid



or its dual, and thus the meaning of all other proof rules will be tightly connected to it.

1.3 Our Contribution

1.3.1 Contributions to the Study of Proofs

We construct a first-order intuitionistic logic in which proofs have stateful computational

content and correspond closely to history-sensitive strategies in the Curien-Lamarche

game model. This close correspondence is made precise via full and faithful completeness

results — each finitary strategy is the denotation of a unique analytic (cut-free) proof.

Infinite strategies can be modelled using non-analytic rules, or infinitary analytic proofs.

The stateful behaviour comes from the fact that the strategies are history sensitive.

Further light can be shed on this by giving an embedding of a total imperative program-

ming language inside the proof system. We thus have a unified system where we can

express both first-order logic and stateful programs, and we will be able to exploit this

fact by using the first-order structure to express properties of these programs.

There are two protagonists in the underlying games model, Player and Opponent.

In the logic, this will be reflected by two classes of formulas — positive and negative,

corresponding to the starting protagonist in the corresponding games. This is a different

notion of polarity to that found in focused proof systems [12], but we will discuss the

relationship both in general and by giving a translation from Polarized Linear Logic [53].

We can normalise proofs to their analytic cut-free form via the semantics. This in-

cludes elimination of cuts, but also other admissible rules, including structural symme-

try rules, weakening, and the multiplicative tensor rule (our primary rule for tensor will

be different, exploiting the sequoidal structure).

The proof system is somewhat non-standard in presentation and flavour. This is a

direct consequence of the fact that it models a sequential, step-by-step process, rather

than more abstract notions such as information flow. The main proof-theoretic decisions

when designing the system regard the choice of structural connectives and geometry of

the sequents, together with the choice of proof rules themselves. Here such choices have

been made to facilitate the full completeness results herein obtained with respect to the

sequential, concrete games model; as well as the representation of programs and be-

havioural properties upon them. Thus its proof theoretic beauty from a syntactic stand-

point may be lacking: future interaction with proof theorists may seek to address such

concerns.



1.3.2 Contributions to Game Semantics

As well as providing a logical syntax for representing history-sensitive strategies, our

work also contributes to the study of game semantics in general, in three particular

areas.

Uniform history-sensitive strategies

First, we formalise the notion of uniform history-sensitive strategy over families of games

indexed by first-order structures. The notion of a uniform family of strategies that be-

have independently with regards to the underlying games was used in [6] to give a games

model for multiplicative linear logic, where the corresponding proofs are history-free (the

choice of move made by the strategy depends only on the preceding Opponent-move). For

example, the copycat strategy on α( α is uniform with respect to α. In a history-free

setting the definition is straightforward, since at each point the only move Player can

see is the previous one, which may be a concrete game, or a move from an atomic game.

In a history-sensitive setting, the situation is slightly more complex as Player can have

access to all previous moves, which can include an unbounded number of moves from

atomic games.

Our notion of uniformity is explicitly given with respect to first-order structures. In

particular, formulas are modelled as families of games indexed over first-order models,

and proofs as families of strategies which are uniform with respect to the underlying

model. The definition is entirely semantic, yet it yields a strong correspondence with

the syntax. For example, the game ∃x.P(x) at a model-valuation pair (M,v) consists of

Player choosing a value m ∈ M for x and then playing in P(m). In a general family of

strategies, the strategy component at a model M could pick an arbitrary element of M.

Uniformity ensures that there will be some variable y such that for all models (M,v),

the value v(y) is picked.

We use quite a different approach to that found in other first-order games models,

e.g. [55] which uses explicit first-order labels in the games.

Exponential as a Final Coalgebra

The linear exponential in our games model is history-sensitive: different occurrences

of N in !N can have different behaviour depending on the history of play so far — this

is in contrast to the sequential algorithms sharing exponential [52]. Thus, the usual

promotion rule of linear logic is not sufficient for representing all strategies. We make

the observation that !N is the final coalgebra of the functor X 7→ N ® X and express this

in the logic — once again the sequoid operator plays a key rôle. There is a rule that



constructs a strategy on A ( !B from a strategy on A ( B® A (its anamorphism). On

the logic side, this follows the work of Clairambault [20] for inductive datatypes, but for

the exponential operator of linear logic itself.

As well as being a mathematically clean way of representing the nature of this ex-

ponential, it is also a pleasant way to model the passing of state. To create a stream of

B values !B from a resource A we describe a B value for the first thread, and the re-

source A to be passed to the next thread: A (B®A. In particular, we can represent the

strategy representing a Boolean reference cell by applying this rule to a finite strategy.

Type-theoretic presentation

In collaboration with Makoto Takeyama at AIST, Japan, we have formalised some of the

work of this thesis in the proof assistant Agda [18]. This includes the foundations of

game semantics in the Curien-Lamarche setting. Since these games are forests, they

are well-suited to formalisation in type theory. The definitions of the multiplicatives in

this setting are strikingly concise when compared to the set-theoretic counterparts, and

may have pedagogical value in communicating game semantics to type theoreticians.

Another mechanisation of game semantics is Longley’s Stratagem [56]. This uses

continuations and universal types to construct the strategy denotation of any ML term.

Our formalisation is more foundational, using dependent types in a crucial way to rep-

resent the games themselves.

1.3.3 Contribution to Programming Languages

We can view our proof system as a low-level language for describing imperative programs

in a setting with expressive types. In particular, proof rules in the analytic subsystem

represent move-by-move behaviour of the underlying strategies, while the proof rules

in the extended system represent macro-level features such as composition, aggregating

imperative objects together, and hiding part of the external interface.

The system provides a framework in which one can write imperative programs that

are guaranteed to terminate, but where infinite data structures such as stacks are ex-

pressible. In particular, we will consider embeddings of total imperative languages into

our system, which include expressive control features and restricted forms of higher or-

der state. Note that our choice of games model is vital for this — if we were working

in the more expressive system of Conway games, full general reference cells would be

expressible, and hence cyclic reference cells, recursion, and divergence.

In particular one can express the final coalgebraic nature of !N explicitly in the pro-

gramming language, in both call-by-value and call-by-name settings. In a call-by-value



setting, the operator is of the following type:

encaps : (s -> s × o) -> s -> (1 -> o)

One can think of encaps f i : 1 -> o as an object which provides an o value on

demand, depending on its internal state. Here, i is the initial value of the internal

state, and f maps the current state to an output o value and the new internal state.

This operator has been seen before: it was the crux of encapsulating internal state in

games model of an object-oriented language given in [75]. Note that s and o can be

arbitrary higher-order types, so this represents a limited form of higher-order state in

this total setting.

Finally, we note that we can use the first-order structure together with the impera-

tive features. One use of this is to model programs with data-independent ground types

and cells, where the only operation is equality testing.

1.4 Related Work

Several authors have previously studied proof systems inspired by semantics that are

richer than the simple true/false dichotomy.

In Hintikka’s independence-friendly logic [33], one can write formulas such as

∀x.∃y.∀z.∃w/x.P(x, y, z,w)

to state that y can depend on x and w on z, but w may not depend on x. This has a

similar feel to the constraints discussed above on strategies, which restrict the parts of

the history that is visible to Player when deciding his next move.

Japaridze’s Computability Logic [39] seeks to understand computability an interac-

tive two-player game — functions over discrete time. Unlike the games we will study,

they are not alternating: Player and Opponent may play multiple moves in succession.

Like our work, the simple games model is taken as a fundamental notion, and a logic

is developed that accurately reflects this model. Syntactic connectives relate to seman-

tic connectives on games, and so on. This work strictly considers strategies that are

computable in nature. This model also validates Blass’s examples.

Cockett, Cruttwell and Saff [21] have described a simple logic where formulas ex-

plicitly represent game trees, for Conway games. This style of presentation is closely

related to our type-theoretic presentation of game semantics in Appendix A, and the

cut-elimination dynamics corresponds to our type-theoretic definition of strategy compo-

sition. This in turn is related to our syntactic cut elimination procedure.



There are close links between focused proof systems [12] and game semantics. In

focusing, negative and positive connectives correspond to reversible and irreversible in-

troduction rules. Proofs proceed in negative and positive phases in which the reversible

and irreversible rules are respectively exclusively applied. This reduces the search space

of proofs, while preserving provability. The relationship to game semantics is that posi-

tive, irreversible rules correspond to Player making some move in a strategy that cannot

be taken back; while the negative, reversible rules correspond to book-keeping that is

not explicitly linked to a move in the corresponding strategy. To obtain our full and

faithful completeness result we will need to use some similar techniques, and ours will

be based on the notion of moves in games in a more explicit manner.

Girard’s Ludics [29] takes focusing to its extreme, by combining all of the proof rules

in a single phase into a single rule, using synthetic connectives. Thus a proof tree really

does correspond to a strategy, with alternate positive and negative rules correspond-

ing to Opponent and Player moves. Ludics has also been referred to as “untyped” in the

sense that formulas themselves are abstracted away and only the relative locations mat-

ter, which correspond to the tagging in the constructions on games we will see. Our proof

system does not have this property: our operations are at most binary, and there are re-

sultantly sequences of proof rules that are syntactic book keeping that do not correspond

to any move in the game model — just semantic isomorphisms.

Longley’s Eriskay project [59] also uses the Curien-Lamarche games model as a

starting point. This work constructs a large scale, real-world programming language

with clean semantics in this simple games model. The hypothesis is that clean mathe-

matical models lead to hygienic, consistent programming languages, as can be seen by

purely functional languages. Game semantics provides clean semantic models of lan-

guages with side-effects, and the Curien-Lamarche setting is both strikingly simple and

expressive. Thus, a programming language based on this model should be semantically

natural, and expressive. This body of work complements ours nicely, which provides an

analysis of the same model from a logical perspective.

Some models of state have used linear logic as a key tool, such as [70]. This logic

also is directly inspired by a semantic model — in this case, coherence spaces. The

work models interference-free Idealized Algol, without aliasing. Later work exploiting

the sequential nature of games [9] allowed full Idealized Algol to be modelled.

We note that there has been other work in extending the Curry-Howard isomorphism

to additional effects. As noted by Griffin [30], axioms for classical logic correspond to

control operators. A computational calculus corresponding to classical natural deduction

was given in [67]. Other extensions include using the possibility modality of modal logic

to model monadic types for effects [25], and using the necessity modality to model staged



computation [68].

There has also been work in extending the Curry-Howard isomorphism to other con-

structs on the proof side. A notable example is the computational interpretation of full

ZF classical set theory in [40] and the axiom of choice in [41]. The latter is of particular

relevance, as it shows that one of the operators that can be typed by an axiom of choice

is that of examining the state of an external clock — clearly an imperative operation.

Other approaches have been used to give games models of first-order logics, including

[55]. The latter work uses explicit first-order pointers to represent information flow,

which contrasts to our formalisation using lax natural transformations.

1.5 Outline of Thesis

In Chapter 2, we introduce the kernel of our logic, containing just the the multiplica-

tives, additives and units. Formulas represent finite games, and proofs total history-

sensitive strategies upon them. We give a categorical model of the logic using sequoidal

closed categories, of which the games model is a primary instance. We show how finitary

imperative objects can be represented in the logic. We identify further axioms on the cat-

egorical model that enable a full and faithful completeness result whereby each arrow

between type objects is the denotation of a unique analytic proof. Our games model sat-

isfies these axioms. Finally, we extract from this a syntactic cut elimination procedure,

which is sound with respect to any instance of the categorical model.

In Chapter 3, we introduce exponentials into the logic. The exponential is concretely

based upon the games exponential in [36]. Since the resulting games are infinite, win-

ning conditions must be imposed to ensure composition of totality. We observe that this

exponential is the final coalgebra of X 7→ N ® X and use this as the key exponential rule

in the logic. Using this final coalgebraic rule we model some imperative features such as

a reusable Boolean reference cell. Finally, we extend the full completeness and cut elim-

ination procedures to this setting. For infinitary strategies, the corresponding analytic

proof is also infinite, which we can formalise using a final coalgebraic presentation.

In Chapter 4, we introduce the first-order features of our logic. In particular, we

introduce atoms, quantifiers, and equality. Semantics of formulas and proofs are now

families, indexed by the underlying first-order structure. However, the strategies must

behave uniformly with respect to this structure, which we formalise using lax natural

transformations. In the function-free setting, we can use this to show the full complete-

ness result, where any such uniform family of winning strategies is the denotation of a

unique analytic proof. Once again, strategies that have infinite components yield infini-

tary analytic proofs.



In Chapter 5, we will show how programs and properties upon them may be ex-

pressed in our logic. We will first show how finitary call-by-name and call-by-value

lambda calculi can be embedded, via Polarized Linear Logic. We add imperative con-

stants including state and coroutines, by giving the embeddings into our logic directly.

By extending the logic with an infinite-choice operator, we can express a natural number

base type and all primitive recursive functions. Finally, we will show how we can use

the first-order structure to represent behavioural properties upon these programs.

In Chapter 6 we consider further directions. These include polymorphism, recursive

types, other exponential structures, partiality and other game models.

In Appendix A, we sketch a formalisation of some of this work in the proof assistant

Agda. In particular, we will formalise finite games, connectives on games, and strategies

in type theory. We formalise the logic WS together with its semantics and full complete-

ness procedure. We also formalise the embedding of a finitary programming language

into WS, and hence its game semantics. Finally, we will provide a tool for interacting

with the generated strategies.



Chapter 2

A Logic of Finite Dialogues

In this chapter we introduce the affine unit-only kernel of the Logic of Sequentiality: a

sequent calculus where proofs correspond to history-sensitive strategies on finite games.

We describe its categorical model and prove a strong full completeness result.

We will first describe Curien-Lamarche games and the operations on them which

correspond to the syntactic connectives in our logic WS. We will then give the proof rules

of WS, and equip proofs with semantics as total history-sensitive strategies. Next, we

will show how finite imperative objects can be represented as proofs in WS. We will also

show that multiplicative-additive Intuitionistic Linear Logic (IMALL) can be embedded

inside our logic.

The formal semantics of WS will be given with respect to a categorical model: the

kernel presented in this chapter can be interpreted in a sequoidal closed category [45] of

a certain kind. The games model is an instance of this categorical model.

We will identify a set of core rules, and call proofs made up using only these rules

analytic. In particular, analytic proofs are cut-free. We will identify further categorical

axioms which identify when the model is fully and faithfully complete — i.e. each arrow

between type objects is the denotation of a unique analytic proof. The Curien-Lamarche

games model satisfies these axioms. Thus, this provides a normalisation procedure from

proofs to analytic proofs, via the semantics. From this, a syntactic cut elimination pro-

cedure can be extracted, which is sound with respect to the categorical model.



2.1 Games and Strategies

2.1.1 Games and Strategies

Our notion of game is essentially that introduced by [14], and similar to that of [6, 52].

If A is a set, let A∗ denote the free monoid (set of sequences) over A, and ε denote the

empty sequence.

Games

Definition A game is a tuple (MA,λA,bA,PA) where

• MA is a set of moves

• λA : MA → {O,P}

– We call m an O-move if λA(m)=O and a P-move if λA(m)= P.

• bA ∈ {O,P} specifies a starting player

– We call s ∈ M∗
A alternating if s starts with a bA-move and alternates between

O-moves and P-moves. Write M�
A for the set of such sequences.

• PA ⊆ M�
A is a nonempty prefix-closed set of valid plays.

Example The game of natural numbers is

N= (q∪N, {q 7→O,n 7→ P},O, {ε, q}∪ {qn : n ∈N}).

A maximal play consists of an Opponent move q (‘which natural number are you?’) fol-

lowed by a Player response n for some n ∈N.

We will call a game A negative if bA = O and positive if bA = P. We write A,B,C, . . .

for arbitrary games; L, M, N, . . . for arbitrary negative games and P,Q,R, . . . for arbitrary

positive games. Define ¬ : {O,P}→ {O,P} by ¬(O)= P and ¬(P)=O.

Remark Games could be equivalently presented as a forest together with a polarity:

the polarity determines whether the root moves are Opponent moves or Player moves,

and alternation determines the owner of subsequent moves.

Definition A game A is bounded if there is some n ∈N such that all plays in PA have

length at most n. A game A is finite if PA is finite.



Strategies

As usual we define the notion of strategy as a set of traces.

Definition A strategy σ for a game (MA,λA,bA,PA) is a subset of PA satisfying:

• If sa ∈σ, then λA(a)= P

• If sab ∈σ, then s ∈σ

• If sa, sb ∈σ, then a = b

• If σ=∅ then bA = P, and if ε ∈σ then bA =O.

We write depth(σ) for the length of the longest play in σ.

Definition A strategy on a game A is total if it is nonempty and whenever s ∈ σ and

so ∈ PA, there is some p ∈ MA such that sop ∈σ.

2.1.2 Connectives

We next describe various operations on games. These connectives preserve boundedness

and finiteness, and will correspond to connectives in our logic. If X and Y are sets, let

X +Y = {in1(x) : x ∈ X }∪ {in2(y) : y ∈ Y }. We use standard notation [ f , g] for copairing. If

s ∈ (X +Y )∗ then s|i is the subsequence of s consisting of elements of the form ini(z). If

X1 ⊆ X∗ and Y1 ⊆Y ∗ let X1‖Y1 = {s ∈ (X +Y )∗ : s|1 ∈ X1 ∧ s|2 ∈Y1}.

Empty Game

We define a negative game with no moves

1= (;,;,O, {ε}).

There is one strategy on 1 given by {ε}, and this strategy is total.

We can similarly construct an empty positive game

0= (;,;,P, {ε}).

There is one strategy on 0 given by ; and this strategy is not total (intuitively, it is

Player’s turn to play first but he has no moves to play).



One-move Game

We write ⊥ for the negative game with a maximal play of just one move:

⊥= ({q}, {q 7→O},O, {ε, q}}).

There is a single strategy {ε} on ⊥, and this strategy is not total.

We write > for the positive game with just one move:

>= ({q}, {q 7→ P},P, {ε, q}}).

There is a total strategy on >, given by {q}.

Product

If we consider games as forests, the product of two games is given by placing the two

forests side-by-side. If X1 ⊆ X∗ and Y1 ⊆Y ∗ let X1 +∗ Y1 = {s ∈ X1‖Y1 : s|1 = ε∨ s|2 = ε}.
If N and L are negative games, define

N&L = (MN +ML, [λN ,λL],O,PN +∗ PL).

Thus, on Opponent’s first move he chooses to play either in N or L, and thereafter play

remains in that component. A (total) strategy on N&L corresponds to a pairing of a

(total) strategy on N with a (total) strategy on L.

If Q and R are positive games, define

Q⊕R = (MQ +MR , [λQ ,λR],P,PQ +∗ PR).

On Player’s first move he chooses to play either in Q or R, and thereafter play remains

in that component. A total strategy on Q ⊕R corresponds to either a total strategy on

Q or a total strategy on R. The set of strategies on Q ⊕R is the coalesced sum of the

strategies on Q and the strategies on R, identifying the strategy ; in each.

Tensor

The multiplicative operators ⊗, O are also played over the disjoint sum of moves.

If N and L are negative games, a play in N ⊗L is an interleaving of a play in N

together with a play in L: Opponent begins in either component, and thereafter may

switch between them. Define

N ⊗L = (MN +ML, [λN ,λL],O, (PN‖PL)∩M�
N⊗L).



The fact that the play restricted to each component must be alternating, and that the

play overall must be alternating, ensures that only Opponent may switch between com-

ponents. A strategy on N⊗L does not correspond just to a pair of strategies on N and L:

since strategies are history-sensitive, the choice of a move in one component can depend

on play that has previously occurred in the other component.

Similarly, if Q and R are positive games, the game QOR consists of an interleaving

where Player may switch between the two components. Define

QOR = (MQ +MR , [λQ ,λR],P, (PQ‖PR)∩M�
QOR).

Sequoid

The sequoid connective was introduced in [45] and its properties can be used to model

stateful effects [45,51]. Here we describe its action on Curien-Lamarche games.

A play in N ®L is a play in N ⊗L where Opponent is restricted to playing his first

move in N. Similarly, a play in Q�R is a play in QOR that must begin in Q. We can

also consider the negative game N�Q, where play begins in N and Player may switch

to Q after the first move and then switch between components. Finally we can consider

the positive game Q®N where play begins in Q and it is Opponent that can switch.

If X1 ⊆ X∗ and Y1 ⊆ Y ∗ let X1‖LY1 = {s ∈ X1‖Y1 : s|1 = ε⇒ s|2 = ε}. Let A and B be

games of arbitrary polarity. Define

ATB = (MA +MB, [λA,λB],bA, (PA‖LPB)∩M�
ATB).

The polarity of B determines whether Player or Opponent may switch between the two

components. To emphasise this, we will write ATB as A�B if B is positive (when Player

may switch) and A®B if B is negative (when Opponent may switch).

Lifts

We can use the sequoid to add a single move to the front of a game. If N is a negative

game, a play in the positive game

↓ N =>®N

consists of a play in N prefixed by an extra P-move. A total strategy on ↓ N corresponds

to a total strategy on N. A strategy on ↓ N is either ; or corresponds to a strategy on N.

If P is a positive game, a play in the negative game

↑ P =⊥�P



consists of a play in P prefixed by an extra O-move. A (total) strategy on ↑ P corresponds

to a (total) strategy on P.

Negation

If A is a negative (resp. positive) game, then we can define the negation of A as a positive

(resp. negative) game. This preserves the structure of the game but inverts the role of

Player and Opponent. If A is a game, define

A⊥ = (MA,¬◦λA,¬bA,PA).

In forest notation, negation merely switches polarity.

The negation operator is involutive. There is a duality between our various opera-

tors: 1⊥ = 0, ⊥⊥ = >, (M ⊗ N)⊥ = M⊥ON⊥, (A ® N)⊥ = A⊥�N⊥, (A�P)⊥ = A⊥ ®P⊥,

(M&N)⊥ = M⊥⊕N⊥.

Implication

If M and N are negative games, we can derive implication

M ( N = N�M⊥.

A play in M ( N consists of a play in N interleaved with a play in a version of M where

the rôles of Player and Opponent are swapped (an ‘input version’ of M). For example, for

each function f :N→N we have a total strategy σ f on N(N with maximal plays of the

form

in2(q)in1(q)in1(n)in2( f (n))

for each n ∈N. Following standard notation, we will sometimes write plays in the follow-

ing format:

N ( N
q O

q P

n O

f (n) P

The horizontal positioning indicates the component (tag) of the moves, with the play as

a sequence of moves running vertically.

Note that this operation represents affine implication: there is only one (inverted)

copy of A in A ( B. Thus, there is no strategy in general on A ( A ⊗ A. In the next



chapter we will see how a function space can be defined where the argument can be

reused.

2.1.3 Some Isomorphisms

Given two games A and B, we say that A and B are forest isomorphic if bA = bB and

PA and PB are isomorphic as forests. We will later construct categories of games, and

forest isomorphisms will correspond to isomorphisms in the usual sense. Some forest

isomorphisms between games are given in Figure 2-1. The (total) strategies on any two

isomorphic games correspond to each other, and we will use this in the semantics of the

logic WS.

Figure 2-1: Some Isomorphisms of Games

M⊗N ∼= N ⊗M POQ ∼=QOP
M⊗ (N ⊗L)∼= (M⊗N)⊗L PO(QOR)∼= (POQ)OL

M⊗1∼= M ∼= M&1 PO0∼= P ∼= P ⊕0
M&N ∼= N&M P ⊕Q ∼=Q⊕P

M&(N&L)∼= (M&N)&L P ⊕ (Q⊕R)∼= (P ⊕Q)⊕R
(M⊗N)( L ∼= M ( (N ( L) P ® (M⊗N)∼= (P ®M)®N

M ( (N&L)∼= (M ( N)&(M ( L) (P ⊕Q)®N ∼= (P ®N)⊕ (Q®N)
M ( 1∼= 1®M ∼= 1 0®M ∼= 0�M⊥ ∼= 0

M⊗N ∼= (M®N)&(N ®M) POQ ∼= (P�Q)⊕ (Q�P)
(M&N)®L ∼= (M®L)&(N ®L) (P ⊕Q)�R ∼= (P�R)⊕ (Q�R)

M® (N ⊗L)∼= (M®N)®L P� (QOR)∼= (P�Q)�R
M®1∼= M P�0∼= P

(M ( N)(⊥∼= (N (⊥)®M >® (M�Q)∼= (>®M)�Q
⊥®M ∼=⊥ >�P ∼=>

2.1.4 Imperative Objects as Strategies

Semantics of a full object-oriented language can be given by interpreting types as games

and programs as strategies [75]. As an example, we describe the interpretation of a

imperative object as a strategy on an appropriate game. We will later see how this

object can be represented as a proof in our system.

For brevity, we shall abuse notation writing qi rather than ini(q).

We shall consider a simple counter object with two methods: a void press() method

and a nat read() method, returning the number of times the press method has pre-

viously been invoked. For simplicity here, we will allow the read method to be called

only once, and thus its type may be represented by the game N. The type of press — a

command that may be repeated indefinitely — may be represented as a negative game



Σ∗. In this game, Opponent and Player alternately play q and a respectively. This game

is defined by

Σ∗ = ({q,a}, {q 7→O,a 7→P},PΣ∗})

where PΣ∗ is the set of all (finite) prefixes of the infinite string (qa)ω. To combine these

into an object, we use the tensor ⊗.

The strategy count : Σ∗⊗N representing this counter is {s ∈ PΣ∗⊗N : β(s)} where β(s)

holds if s = ε or s = tq1a1 for β(t) or s = tq2m2 where s contains m occurrences of a1. An

example play in count is

Σ∗ ⊗ N
q O

a P

q O

a P

q O

2 P

In contrast with the history-free strategies which denote proofs of linear logic in the

model of [6], this strategy is history-sensitive — the move prescribed by the strategy

depends on the entire play so far. It is this property which allows the state of the object

to be described implicitly, as in e.g. [8].

2.2 The Logic WS

2.2.1 Proof system

We will now describe a proof system in which formulas represent (finite) games, and

each proof of a formula represents a total strategy on the corresponding game.

Formulas

There are two classes of WS formulas: positive and negative. The positive and negative

formulas will represent positive and negative games respectively, we speak of the polar-

ity of a formula. We might read negative formulas as representing resources that must

be interrogated by the environment, and positive formulas as representing systems that

provide information when they choose to.

The positive and negative formulas are defined as follows:

P := 0 | ⊥ | POQ | P�Q | P�Q | P�N

N := 1 | > | N ⊗M | M&N | N�M | N�P



Define an operation −⊥ on formulas (inverting polarity) as follows:

0⊥ = 1 (POQ)⊥ = P⊥⊗Q⊥ (P�Q)⊥ = P⊥®Q⊥

1⊥ = 0 (M⊗N)⊥ = M⊥ON⊥ (M®N)⊥ = M⊥�N⊥

>⊥ = ⊥ (P ⊕Q)⊥ = P⊥&Q⊥ (P ®M)⊥ = P⊥�M⊥

⊥⊥ = > (M&N)⊥ = M⊥⊕N⊥ (M�P)⊥ = M⊥®P⊥

We define M ( N = N�M⊥, ↑ P = ⊥�P, ↓ N = >®N. We can interpret each positive

(resp. negative) formula of WS as a positive (resp. negative) finite game following the

constructions in Section 2.1.2.

Proof Rules

Proofs in WS of a given formula will be interpreted as total strategies on the appropriate

game. A sequent of WS is a non-empty sequence of formulas ` A1, . . . , An. Semantically,

the comma A,B will represent a left merge — A�B if B is positive or A�B if B is

negative — and is therefore left-associative. For example, if M, N are negative formulas

and P,Q positive formulas, the sequent

` M,P,Q, N

is semantically equivalent to

` ((M�P)�Q)®N.

Thus, in the game interpretation of a sequent Γ the first move must occur in the first (or

head) formula of Γ.

The proof rules for WS are defined in Figure 2-2. Here M, N range over negative

formulas, P,Q over positive formulas, Γ,∆ over lists of formulas, Γ∗ over non-empty lists

of formulas and Γ+,∆+ over lists of positive formulas.

The rules are partitioned into core rules and admissible rules. We say that a proof

is analytic if it uses only the core rules. We will show that any proof is denotationally

equivalent to an analytic proof. Thus, the core rules have a higher status as a choice

of primitives: we could conceivably add further non-core rules (equipped with a sound

semantic interpretation) if it were convenient to do so.

We make some observations regarding the core rules. First, we see that they are all

additive. This is particularly striking in the case of the tensor introduction rule P⊗. In

this case the rule (additively) decomposes the plays in M⊗N into two possibilities: those

that start in M and those that start in N. Thus we are explicitly modelling the fact that

⊗ represents an interleaving, rather than just an arbitrary monoidal structure. Second,



we note that the core rules are of a specific shape: for each connective, there is a rule

introducing that connective in the head position; and there are rules for eliminating

certain connectives in the second position, if the head formula is ⊥ or >. The only

connectives corresponding to a choice of introduction rule are O and ⊕. Thus, proof

search in the analytic subsystem of WS is particularly simple.

We can use the non-core rules to embed multiplicative-additive Intuitionistic Linear

Logic inside WS in a compositional manner. The non-core rules have also been chosen to

facilitate representing finitary imperative objects. For example, Pmul to aggregating ob-

jects, and P−
wk to hiding part of an object’s interface from the outside world. The Pcut rule

corresponds to composition of functions, and has been generalised appropriately based

on the semantic interpretation of the structural comma connective. One might wish to

generalise further, e.g. allowing negative formulas in ∆, but this is not “semantically

sound”. However, we may allow Γ to be empty only if Γ1 is also empty, and this case is

dealt with in the rule P0
cut.

Focusing and Polarities

We make a brief note on polarities and reversibility, and a comparison with focused

proof systems. In such systems, polarisation is used to differentiate between connec-

tives whose corresponding rules are reversible or irreversible [12]. Irreversible rules act

on positive formulas. An irreversible rule is one where (reading upwards) in applying

the rule one must make some definite choice, a choice which could determine whether

the proof search succeeds or not. Thus, additive disjunction introduction is always an ir-

reversible rule, and in linear logic so is the tensor introduction rule, since a choice must

be made regarding how the context is split (see Figure 2-3).

As we have noted, in WS the core introduction rule for tensor is additive, not multi-

plicative. Thus, this rule is reversible, and ⊗ is a negative connective. In contrast, O is

a positive connective as there are two different core introduction rules, which are not re-

versible. Thus, as well as the semantic motivation, we can view our distinction between

positive and negative formulas in the same light as the polarities of focused systems.

From a semantic viewpoint, reversible rules are those that perform book-keeping, rear-

ranging formulas or splitting additively; while the irreversible rules actually commit to

performing some specific move in a given situation.

Like focused systems, proof search in WS follows a two-phase discipline in which

rules of one kind or another are exclusively applied. But the nature of these phases

differ. In focused systems, the proof search alternates between negative and positive

phases, in which reversible and irreversible rules are exclusively applied respectively.

Analytic proof search in WS follows a different two-phase discipline, whereupon we first



Figure 2-2: Proof rules for WS

Core rules:

P1 ` 1,Γ
` A, N,Γ

P® ` A�N,Γ
` A,P,Γ

P� ` A�P,Γ
` M, N,Γ ` N, M,Γ

P⊗ ` M⊗N,Γ
` P,Q,Γ

PO1 ` POQ,Γ
`Q,P,Γ

PO2 ` POQ,Γ
` M,Γ ` N,Γ

P& ` M&N,Γ
` P,Γ

P⊕1 ` P ⊕Q,Γ
`Q,Γ

P⊕2 ` P ⊕Q,Γ
`⊥,Γ

P−
⊥ `⊥, N,Γ

` PP+
⊥ `⊥,P

`⊥,POQ,Γ
PO⊥ `⊥,P,Q,Γ

`⊥,P�N,Γ
P�⊥ `⊥,P, N,Γ

P> `> ` NP−
> `>, N

`>,Γ
P+
> `>,P,Γ

`>, M⊗N,Γ
P⊗
> `>, M, N,Γ

`>, N�P,Γ
P�
> `>, N,P,Γ

Admissible rules:

`Γ∗,∆
PT

1 `Γ∗,1,∆
`Γ∗, M, N,∆

PT⊗ `Γ∗, M⊗N,∆
`Γ∗, M, N,∆

P−
sym `Γ∗, N, M,∆

`Γ∗, M,∆
P−

wk `Γ∗,∆
`Γ∗,0,∆

PT
0 `Γ∗,∆

`Γ∗,P,Q,∆
PT
O `Γ∗,POQ,∆

`Γ∗,P,Q,∆
P+

sym `Γ∗,Q,P,∆
`Γ∗,∆

P+
wk `Γ∗,P,∆

` M,Γ,∆+ ` N,∆+
1Pmul ` M,Γ, N,∆+,∆+

1

Pid ` N, N⊥

`Γ∗, N⊥,Γ1 ` N,∆+
Pcut `Γ∗,∆+,Γ1

` N⊥ ` N,Q
P0

cut `Q
` N,Q,∆+

Pid® ` M, N, M⊥�Q,∆+
`Γ,Pi,∆PT

⊕i `Γ,P1 ⊕P2,∆

` M,Γ,P ` N,∆+
P( ` M,Γ,P ®N,∆+

`Γ, M1&M2,∆
PT

& i `Γ, Mi,∆



decompose the first formula of a sequent into a unit using the core introduction rules

(some reversible, some irreversible), and then collate the tail formulas together using

the core elimination rules (all of which are reversible). We will give an embedding of a

particular focussed system — Polarized Linear Logic [53] — inside WS in Sections 2.6

and 3.4.4.

2.2.2 Interpretation of Proofs

Here we informally describe the interpretation of a proof of ` Γ as a strategy on the in-

terpretation of Γ. We will give formal categorical semantics of proofs in the next section.

• The interpretation of P1 is the unique total strategy on the game 1,Γ (where it

is Opponent’s turn to start, but there are no moves for him to play since the first

move must take place in the empty game 1).

• The interpretation of P> is the unique total strategy on the game >, where Player

plays a move and the game is over.

• The interpretation of unary rules P®, P�, PO⊥ , P®
⊥, P⊗

> and P�
> are based on the

fact that the game interpretation of the premise and conclusion are the same, up

to retagging of moves.

• For P& we note that given strategies σ : M,Γ and τ : N,Γ we can construct a strat-

egy on M&N,Γ which plays as σ if Opponent’s first move is in M, and as τ if

Opponent’s first move is in N.

• Similarly, for P⊗ we note that given strategies σ : M, N,Γ and τ : N, M,Γ we can

construct a strategy on M⊗N which plays as σ if Opponent’s first move is in M, and

as τ if Opponent’s first move is in N. Here we are making use of the isomorphism

M⊗N ∼= (M®N)&(N ®M) — each play in M⊗N must either start in M (and thus

be a play in M®N) or in N (and thus be a play in N ®M).

• For P⊕1 we note that given a strategy σ : P,Γwe can construct a strategy on P⊕Q,Γ

with Player choosing to play his first move in P and thereafter playing as σ. For

P⊕2 Player can play his first move in Q and then play as the given strategy.

• Similarly, for the PO rules, we note that in a strategy on POQ,Γ Player may choose

to either play his first move in P (requiring a strategy on P,Q,Γ) or in Q (requiring

a strategy on Q,P,Γ).

• The interpretation of P+
⊥ uses the observation that total strategies on ⊥,P = ↑P

are in correspondence with total strategies on P. Similarly, the interpretation of



P−
> uses the observation that total strategies on >, N = ↓N are in correspondence

with total strategies on N.

• The interpretation of P−
⊥ uses the fact that the play restricted to the first two

components ⊥, N must itself be a valid play — in particular alternating between

Opponent and Player. Since Opponent plays the first move in this component he

cannot also play the second move, so can never play in N — we have ⊥® N ∼=
⊥. Thus the set of plays in ⊥, N,Γ and ⊥,Γ are the same, up to retagging. The

interpretation of P+
> is similar.

• In the cases of PT⊗, PT
1 , PT

O, PT
0 , P+

sym and P−
sym, the premise and conclusion are the

same game, up to retagging, and the rule can be interpreted using game isomor-

phisms.

• In the cases of PT
&1, PT

&2, P−
wk, a strategy on the conclusion can be obtained by

forgetting part of the strategy on the premise.

• In the cases of PT⊕1, PT⊕2, P+
wk, a strategy on the conclusion can be obtained by using

the strategy on the premise and ignoring the extra moves available to Player.

• The Pid rule requires a strategy on N ( N: we can use a copycat strategy in which

Player always switches component, playing the move that Opponent previously

played. The Pid® rule can be interpreted by playing copycat in the M component.

• The Pcut and P0
cut rules can be interpreted by playing the two strategies given by

the premises against each other in the N component: “parallel composition plus

hiding”, as we will see.

• The Pmul rule can be interpreted by combining the strategies given by the premises

in a multiplicative manner: Opponent’s moves in M,Γ are responded to in accor-

dance with the first premise, and moves in N in accordance with the second. The

P( rule can be interpreted similarly.

We can use the above to give semantics to proofs of WS as total strategies. We will later

show that any total strategy on the interpretation of a sequent Γ is the interpretation of

a unique analytic proof of `Γ.

2.2.3 Embedding IMALL inside WS

We next show that WS contains the multiplicative-additive fragment of Intuitionistic

Linear Logic. For reference, the rules of IMALL are given in Figure 2-3. We note that

each formula of IMALL can be read as a negative formula of WS (with M ( N = N�M⊥).



Figure 2-3: Proof rules for IMALL

Γ, M, N,∆` L
Γ, M⊗N,∆` L

Γ` M ∆` N
Γ,∆` M⊗N

Γ,1,∆` N
Γ,∆` N

Γ` 1
Γ` M N,∆` L
Γ, M ( N,∆` L

Γ, M ` N
Γ` M ( N

Γ, M,∆` C
Γ, M&N,∆` C

Γ, N,∆` C
Γ, M&N,∆` C

Γ` M Γ` N
Γ` M&N

Proposition 2.2.1 Let p be a proof of M1, . . . , Mn ` N in IMALL. Then there exists a proof

κ(p) of ` N, M⊥
1 , . . . , M⊥

n in WS.

Proof We show that for each rule of ILL there is a derivation in WS of the conclusion

from the premises.

The left ⊗ rule just corresponds to PT
O. For the right ⊗ rule, with Γ= G1, . . . ,Gn and

∆= D1, . . . ,Dm, we duplicate the proof and use Pmul in the following manner:

` M,G1, . . . ,Gn ` N,D1, . . . ,DmPmul ` M, N,G1, . . . ,Gn,D1, . . . ,Dm

` N,D1, . . . ,Dm ` M,G1, . . . ,GnPmul ` N, M,D1, . . . ,Dm,G1, . . . ,GnP+
sym ...P+
sym ` N, M,G1, . . . ,Gn,D1, . . . ,DmP⊗ ` M⊗N,G1, . . . ,Gn,D1, . . . ,Dm

The left 1 rule just corresponds to PT
0 . The right 1 rule just corresponds to P1. The left

( rule can be derived as follows:

` L,D1, . . . ,Dm, N⊥ ` M,G1, . . . ,GnP( ` L,D1, . . . ,Dm, N⊥®M,G1, . . . ,GnP+
sym ...P+
sym ` L,G1, . . . ,Gn, N⊥®M,D1, . . . ,Dm

The right ( rule corresponds to P�. The left & rules correspond to the PT⊕ rules. The

right & rule corresponds to P&.

Define the derived rule Pmul⊗ as the derivation concluding ` M⊗N,∆+,∆+
1 from ` M,∆+

and ` N,∆+
1 as per the translation of the IMALL right-⊗ rule.

The embedding above does not cover the entire range of proofs in WS: proofs in

IMALL denote history-free strategies [6], while interpretations of WS proofs may have

full access to their history. For example, we can consider the medial rule as identified by

Blass in [14]. This formula can be expressed in IMALL as follows:



((A⊗B (⊥)⊗ (C⊗D (⊥)(⊥)(

((A (⊥)⊗ (C (⊥)(⊥)⊗ ((B (⊥)⊗ (D (⊥)(⊥)

This formula is not provable in IMALL. However, there is a history-sensitive strat-

egy on each instantiation of the above formula: if Opponent first chooses the left hand

component in the output and the right hand component in the input, Player can choose

to play copycat between the copies of C, and so on. This strategy is history sensitive as

the second Player move depends on both the first and second Opponent move. We will

later see that any history-sensitive strategy is the denotation of a proof in WS, and so

instantiations of this formula are provable in WS.

Similarly,

[A⊗ (C&D)]&[B⊗ (C&D)]&[(A&B)⊗C]&[(A&B)⊗D]( (A&B)⊗ (C&D)

is not provable in IMALL. However, its denotation has a history-sensitive strategy: Player

chooses the component on the left-hand side based on Opponent’s first move on the right-

hand side. In the following play we see why this strategy is history sensitive:

[A ⊗ (C & D)] & [B ⊗ (C & D)] & . . . ( (A & B) ⊗ (C & D)

a1

a1

a2

a2

c1

c1

Note that the response to c1 here is in the second component, while if the first four

moves took place in B the response would be in the fifth component. For the same reason,

the map (M®N)&(N®M)( M⊗N used in our semantics of WS is history sensitive; the

above strategy can be expressed in WS by decomposing ⊗ in this way.

The proof outline in WS is given below; the omitted branches are similar.

Pid ` A, A⊥ Pid ` C&D,C⊥⊕D⊥
Pmul ` A,C&D, A⊥, (C⊥⊕D⊥)

PT
O ` A,C&D, A⊥O(C⊥⊕D⊥)

PT⊕1 ` A,C&D, (A⊥O(C⊥⊕D⊥))⊕ . . .
...

P& ` A&B,C&D, (A⊥O(C⊥⊕D⊥))⊕ . . .
...

P⊗ ` (A&B)⊗ (C&D), (A⊥O(C⊥⊕D⊥))⊕ . . .



Thus, we can prove any instance of this formula scheme for any negative WS-formulas

A,B,C and D; and we note that each finite game is expressible as a WS formula. Since

WS does not have propositional variables, we cannot prove the above formula in the

“general case” as a formal object in WS. As a first step in this direction, we will later

introduce atoms into our proof system, which will allow us to sharpen these examples

by formally identifying formulas that are not provable in IMALL but are provable in our

system.

2.2.4 Imperative Objects as Proofs in WS

We now show how a bounded version of our imperative counter can be represented in

WS.

Let ⊕0> = > and ⊕n+1 = >⊕ (⊕n>). Then Nn =↑ (⊕n>) = ⊥� (⊕n>) represents the

type of numbers at most n — there are n+1 analytic proofs of this formula.

We will let Σ = ⊥�> denote the type of commands that can be invoked once. This

formula denotes a game with two moves — an initial Opponent move (“run”) and its

Player response (“done”).

We let !0 A = 1 and !n+1 A = A®!n A. We can see !nM as providing us with n copies of

M. Thus !nΣ represents a switch that can be pressed at most n times.

We may derive a proof countn `!nΣ⊗Nn for any n by induction, representing a fini-

tary version of the object described in Section 2.1.4. The crux of the proof is the con-

cluding application of the P⊗ rule: this partitions interactions in !nΣ⊗Nn into those that

start in !nΣ (with a press) and those that start in Nn (with a read).

...
count1

n,n

`!nΣ,Nn

...
count2

n,n

`⊕n>, !nΣP® ` (⊕n>)®!nΣP+
⊥ `⊥, (⊕n>)®!nΣP®
⊥ `⊥, (⊕n>), !nΣP� `Nn, !nΣ=⊥� (⊕n>), !nΣP⊗ countn `!nΣ⊗Nn

The proof count1n,m `!nΣ,Nm for m > n represents an object whose second component

reveals how many times the first component has been invoked. We define count1n,m for

m> n by induction on n. The base case is simple:

P1
count10,m `!0Σ,Nm = 1,Nm

For count1n+1,m, we have:



...
count1

n,m

`!nΣ,Nm

...
count2

n,m

`⊕m>, !nΣP® ` (⊕m>)® (!nΣ)
P+
⊥ `⊥, (⊕m>)® (!nΣ)

P®
⊥ `⊥,⊕m>, !nΣP� `⊥� (⊕m>), !nΣ

P⊗ `!nΣ⊗NmP−
> `>, !nΣ⊗NmP⊗
> `>, !nΣ,NmP® ` (>®!nΣ),NmP® ` (>®!nΣ)®NmP+

⊥ `⊥, (>®!nΣ)®NmP®
⊥ `⊥,>®!nΣ,NmP®
⊥ `⊥,>, !nΣ,NmP� `⊥�>, !nΣ,NmP®

count1n+1,m `!n+1Σ,Nm = (⊥�>)®!nΣ,Nm

The proof count2n,m `⊕m>, !nΣ for m > n uses the difference between m and n to deter-

mine the result of read: it responds with the number m−n in its first component.

...
count2

n,n+a

`⊕n+a>, !nΣP⊕2
count2n,n+a+1 `>⊕ (⊕n+a>), !nΣ

...
!comn+1

`!n+1ΣP−
> `>, !n+1ΣP⊕1

count2n+1,n+1 `>⊕ (⊕n>), !n+1Σ

Then count20,0 and !comn are given as follows:

P1 ` 1P−
>

count20,0 `>,1

...
!comn

`!nΣP> `>, !nΣP® `>®!nΣP⊥ `⊥,>®!nΣP®
⊥ `⊥,>, !nΣP� `⊥�>, !nΣP® !comn+1 ` (⊥�>)®!nΣ

P1 !com0 ` 1

The interpretation of countn is the history-sensitive strategy on !nΣ⊗Nn that behaves

as a counter, as in Section 2.1.4.

2.3 Categorical Semantics of WS

We now describe a categorical model of WS together with a principal example based on

games and strategies. It will be based on the notion of sequoidal closed category [45]. We

use notation η : F ⇒ G : C → D to mean η is a natural transformation from F to G with



F,G : C →D.

2.3.1 Categories of Games

First, we present some game categories that will be the intended instance of our cate-

gorical model. Objects in these categories will be negative games, and an arrow A → B

will be a strategy on A (B. We can compose strategies using “parallel composition plus

hiding”. Suppose σ : A (B and τ : B (C, define

σ‖τ= {s ∈ (MA +MB +MC)∗ : s|1 ∈ PA ∧ s|2 ∈ PB ∧ s|3 ∈ PC}

and set

τ◦σ= {s|1,3 : s ∈σ‖τ}.

It is well-known that τ◦σ is a well-formed strategy on A (C (see e.g. [6]).

Proposition 2.3.1 Composition is associative, and there is an identity A → A given by

the copycat strategy: {s ∈ PA(A : γ(s)} where γ(s) holds if and only if t|1 = t|2 for all

even-lengthed prefixes t of s.

Definition The category G has negative games as objects, and a map σ : A → B is a

strategy on A (B with composition and identity as above.

This category has been studied extensively in e.g. [22, 52, 58], and has equivalent pre-

sentations using graph games [37] and locally Boolean domains [47].

If A, B and C are bounded, σ : A ( B and τ : B ( C are total then τ◦σ is also total.

We can thus construct subcategories of total strategies.

Definition The category Gt has bounded negative games as objects and total strategies

as maps. The category G f is the full subcategory of Gt containing only finite games.

A map σ : A → B is strict if it responds to Opponent’s first move with a move in A, if it

responds at all. Strict strategies are closed under composition and the identity is strict.

Definition The category Gs has negative games as objects and strict strategies as maps.

The category Gs,t has bounded negative games as objects and strict, total strategies as

maps. The category Gs, f is the full subcategory of Gs,t containing only finite games.

Isomorphisms in G correspond to forest isomorphisms and all isomorphisms are total

and strict [54].



Each of the above categories can be endowed with a symmetric monoidal closed struc-

ture, given by (I,⊗,() where I is the empty game 1 and the actions of ⊗ and ( on

objects are defined as in Section 2.1.2. The following relationships hold:

G �
(full-on-objects)

Gs

Gt

6

�(full-on-objects)
Gs,t

6

G f

(full)
6

�
(full-on-objects)

Gs, f

(full)
6

An arrow from category A to category B indicates that A is a symmetric monoidal

closed subcategory of B. Some full and full-on-objects subcategories are identified.

2.3.2 WS-categories

The notion of sequoidal closed category was first introduced in [45].

Definition A sequoidal category consists of:

• A symmetric monoidal category (C , I,⊗) (we will call the relevant isomorphisms

assoc : (A⊗B)⊗C ∼= A⊗ (B⊗C), lunit⊗ : A⊗ I ∼= A, runit⊗ : I⊗A ∼= I and sym : A⊗B ∼=
B⊗ A)

• A category Cs

• A right-action � of C on Cs. That is, a functor _� _ : Cs ×C → Cs with natural

isomorphisms unit® : A� I ∼= A and pasc : A� (B⊗C) ∼= (A�B)�C satisfying the

following coherence conditions [38]:

A® (B⊗ (C⊗D))
pasc- (A®B)® (C⊗D)

pasc- ((A®B)®C)®D

A® ((B⊗C)⊗D)

id®assoc

? pasc- (A® (B⊗C))®D

pas
c® id

-



A® (I ⊗B)
pasc- (A® I)®B A® (B⊗ I)

pasc- (A®B)® I

A®B

id® lunit⊗

?�

un
it®

® id

A®B

id® runit⊗

?�

un
it®

• A functor J : Cs →C

• A natural transformation wk : J(_)⊗_ ⇒ J(_�_) satisfying further coherence con-

ditions [45]:

A⊗ I
runit⊗- A (A⊗B)⊗C wk⊗ id- (A®B)⊗C wk- (A®B)®C

A® I

wk

?

J(un
it®

) -

A⊗ (B⊗C)

assoc

? wk- A® (B⊗C)

J(pa
sc

) -

Definition An inclusive sequoidal category is a sequoidal category in which Cs is a

full-on-objects subcategory of C containing the monoidal isomorphisms and wk; J is the

inclusion functor; and J reflects isomorphisms.

We can identify this structure in our categories of games: we can extend the left-merge

operator ® to an action Gs ×G → Gs. If σ : A → B and τ : C → D, σ®τ : A ®C → B®D

plays as σ between A and B and as τ between C and D. Note that this only yields a

valid strategy on (A ®C) ( (B®D) if σ is strict. The isomorphisms pasc and unit® ex-

ist, and there is a natural copycat strategy wk : M ⊗N → M ®N in Gs, all satisfying the

required axioms [51]. The functor J reflects isomorphisms as the inverse of strict iso-

morphisms are strict. Thus (G ,Gs) forms an inclusive sequoidal category; as do (Gt,Gs,t)

and (G f ,Gs, f ).

Definition An inclusive sequoidal category is Cartesian if Cs has finite products pre-

served by J (we will write tA for the unique map A → 1). It is decomposable if the

natural transformations dec= 〈wk,wk◦sym〉 : A⊗B ⇒ (A�B)×(B�A) : Cs×Cs →Cs and

dec0 = tI : I ⇒ 1 : Cs are isomorphisms (so, in particular, (C ,⊗, I) is an affine SMC).

A Cartesian sequoidal category is distributive if the natural transformations dist =
〈π1� idC,π2� idC〉 : (A×B)�C ⇒ (A�C)× (B�C) : Cs ×Cs ×C → Cs and dist0 = t1�C :

1�C ⇒ 1 : C →Cs are isomorphisms.

We write dist0 : I ®C ∼= I for the isomorphism (dec0)−1 ◦dist0 ◦ (dec0 ® id).



In the game categories defined above, M&N is a product of M and N, and the empty

game I is a terminal object as well as the monoidal unit. The decomposability and

distributivity isomorphisms above exist as natural copycat morphisms [51].

Definition A sequoidal closed category is an inclusive sequoidal category where C is

symmetric monoidal closed and the map f 7→ Λ( f ◦wk) defines a natural isomorphism

Λs : Cs(B�A,C)⇒Cs(B, A (C).

We can show that G is sequoidal closed, with the internal hom given by ( [51].

In any sequoidal closed category, define apps : (A ( B)� A → B as Λ−1
s (id), and app :

(A (B)⊗A → B =Λ−1(id), noting that app= apps ◦wk. If f : A → B let ΛI ( f ) : I → A (B

denote the name of f , i.e. Λ( f ◦ runit⊗). We let Λ−1
I denote the inverse operation. Recall

that in any symmetric monoidal closed category the following hold:

• Λ( f ◦ g ◦ (h⊗ j))= ( j ( f )◦Λ(g)◦h

• ΛI ( f ◦ g)= (id( f )◦ΛI (g)= (g ( id)◦ΛI ( f )

• Λ−1
I ( f )◦ g =Λ−1

I ((g ( id)◦ f ), g ◦Λ−1
I ( f )=Λ−1

I ((id( g)◦ f )

• 〈ΛI f ,ΛI g〉 = 〈id(π1, id(π2〉◦ΛI〈 f , g〉

Proposition 2.3.2 In any sequoidal closed category, ( restricts to a functor C op×Cs →
Cs with natural isomorphisms unit( : I ( A ∼= A and pasc( : A⊗B (C ∼= A ( (B (C)

in Cs.

Proof We need to show that if g is in Cs then f ( g is in Cs. But f ( g =Λ(g ◦app◦
(id⊗ f ))=Λ(g ◦apps ◦wk◦ (id⊗ f ))=Λ(g ◦apps ◦ (id® f )◦wk)=Λs(g ◦apps ◦ (id® f )) which

is in Cs.

In any symmetric monoidal category the isomorphisms unit( and pasc( exist, but

we must show that they are strict.

• unit( : I ( A → A is given by app◦ runit−1
⊗ . This apps ◦wk◦ runit−1

⊗ = apps ◦unit−1
®

which is a map in Cs.

• pasc( : A ⊗B ( C ∼= A ( (B ( C) is given by Λ(Λ(app ◦assoc)) =Λ(Λ(apps ◦wk ◦
assoc))=Λ(Λ(apps◦pasc−1◦wk◦(wk⊗id))=Λ(Λ(apps◦pasc−1◦wk)◦wk)=Λs(Λs(apps◦
pasc−1)) which is in Cs.

The inverses of the above maps are strict as J preserves isomorphisms.

In distributive, decomposable sequoidal closed categories we can also define the following

natural transformations:



• The isomorphism psym : (A®B)®C ∼= (A®C)®B given by pasc◦ (id® sym)◦pasc−1.

• The isomorphism psym( : C ( (B ( A) ∼= B ( (C ( A) given by pasc( ◦ (sym(

id)◦pasc−1
(

• The isomorphism dist( : A ( (B×C)→ (A (B)× (A (C) given by 〈id(π1, id(

π2〉, whose inverse is Λ〈app ◦ (π1 ⊗ id),app ◦ (π2 ⊗ id)〉. This isomorphism exists in

any monoidal closed category with products.

• The map af : A ⇒ I given by (dec0)−1 ◦ tA.

• The isomorphism dist0( : A ( I → I given by af whose inverse is Λ(runit⊗◦(id⊗af)).
We must check that these are inverses: af ◦Λ(runit⊗◦(id⊗af))= id as both are maps

into the terminal object, and Λ(runit⊗ ◦ (id⊗af))◦af =Λ(runit⊗ ◦ (af⊗ id)◦ (af⊗ id))=
Λ(app) = id as required. We know that runit⊗ ◦ (af ⊗ id)◦ (af ⊗ id) = app as both are

maps into the terminal object.

We can use the structure described above to model the negative connectives of WS.

We will represent positive connectives indirectly, inspired by the fact that strategies

on the positive game P correspond to strategies on the negative game ↑ P = P⊥ ( ⊥
where ⊥ is the one-move game. The object ⊥ satisfies a special property: an internalised

version of linear functional extensionality [3] which shows that any map from a linear

function space A (B into ⊥ can be decomposed into an argument A and a map from B

into ⊥:

Definition An object ⊥ in a sequoidal closed category satisfies linear functional exten-

sionality if the natural transformation lfe : (B (⊥)® A ⇒ (A ( B) (⊥ : C ×C op → Cs

given by Λs(apps ◦ (id®app)◦ (id® sym)◦pasc−1) is an isomorphism.

Related properties have been considered for games models that are not history-sensitive

[3,7], using a tensor rather than sequoid decomposition.

The linear functional extensionality property holds in the Curien-Lamarche games

model [51], but fails in other sequoidal closed categories (e.g. Conway games). In a

sense, it is an algebraic representation of local alternation: using linear functional ex-

tensionality we can give a natural isomorphism abs : ⊥® A ∼=⊥ by noticing that ⊥® A ∼=
(I ( ⊥)® A ∼= (A ( I) ( ⊥ ∼= I ( ⊥ ∼= ⊥, and thus setting abs = unit( ◦ ((dist0()−1 (

id) ◦ lfe ◦ (unit−1
( ® id). In the Conway setting, this isomorphism doesn’t hold: consider a

play in a strict strategy on ⊥( A®⊥, in which after the first two moves Opponent may

return to A.

Definition A WS-category is a distributive, decomposable sequoidal closed category

with an object ⊥ satisfying linear functional extensionality.



Proposition 2.3.3 (G ,Gs), (Gt,Gs,t), (G f ,Gs, f ) all enjoy the structure of a WS-category.

The category of locally Boolean domains [47] is another example of a WS-category.

2.3.3 Semantics of Formulas and Sequents

Let C be a WS-category. We give semantics of both positive and negative formulas as

objects in C below. Note that in our semantics of formulas, JAK = JA⊥K. However, the

polarity of a formula will affect the type of the denotation of proofs of that formula, as

will be seen.

J1K = I J0K = I

J⊥K = ⊥ J>K = ⊥
JM⊗NK = JMK⊗ JNK JPOQK = JPK⊗ JQK
JM&NK = JMK× JNK JP ⊕QK = JPK× JQK
JM®NK = JMK® JNK JP�QK = JPK® JQK
JM�QK = JQK( JMK JP ®NK = JNK( JPK

We consider our list-connective comma to be a binary operator associating to the left.

Then JA,BK is JAK® JBK if A and B are of the same polarity, and JBK( JAK otherwise.

2.3.4 Semantics of Contexts

A context is a (possibly empty) list of formulas. If Γ is a context, we give semantics JΓKb

for b ∈ {+,−} as endofunctors on Cs below.

JεK+ = id JεK− = id

JΓ, MK+ = JMK( JΓK+ JΓ,PK− = JPK( JΓK−

JΓ,PK+ = JΓK+® JPK JΓ, MK− = JΓK−® JMK

Proposition 2.3.4 For any sequent A,Γ we have JA,ΓK= JΓKb(JAK) where b is the polar-

ity of A.

Proof A simple induction on Γ.

Proposition 2.3.5 For any context Γ, JΓKb preserves products.

Proof We can construct isomorphisms distb,Γ : JΓKb(A×B)∼= JΓKb(A)×JΓKb(B) and dist0
b,Γ :

JΓKb(I)∼= I by induction on Γ.



dist0−,ε = id dist0+,ε = id

dist0−,Γ,P = dist0( ◦ (id( dist0−,Γ) dist0−,Γ,N = dist0 ◦ (dist0−,Γ® id)

dist0+,Γ,N = dist0( ◦ (id( dist0−,Γ) dist0+,Γ,P = dist0 ◦ (dist0−,Γ® id)

dist−,ε = id dist+,ε = id

dist−,Γ,P = dist( ◦ (id( dist−,Γ) dist−,Γ,N = dist◦ (dist−,Γ® id)

dist+,Γ,N = dist( ◦ (id( dist−,Γ) dist+,Γ,P = dist◦ (dist−,Γ® id)

We only need to show that JΓKb(πi) ◦dist−1
b,Γ = πi, i.e. JΓK(πi) = πi ◦distb,Γ. Suppose

b =−. We proceed by induction on Γ.

• If Γ= ε then JεK(πi)=πi =πi ◦ id=πi ◦distb,ε.

• If Γ = Γ′, N then JΓK(πi) = JΓ′K(πi)® id = πi ◦dist−,Γ ® id = (πi ® id) ◦ (dist−,Γ′ ® id) =
πi ◦dist◦ (dist−,Γ′ ® id)=πi ◦dist−,Γ as required.

• If Γ=Γ′,P then JΓK(πi)= id( JΓ′K(πi)= id(πi◦dist−,Γ = (id(πi)◦(id( dist−,Γ)=
πi ◦dist( ◦ (id( dist−,Γ)=πi ◦dist−,Γ as required.

The case for b =+ is entirely similar.

2.3.5 Semantics of Proofs

While the semantics of formulas are independent of polarity, semantics of proofs are not.

If p ` A,Γ is a proof, we define Jp ` A,ΓK as an arrow C (I,JA,ΓK) in the case that A is

negative, and as an arrow in C (JA,ΓK,⊥) in the case that A is positive. Semantics of the

core rules are given in Figure 2-4 and the other rules in Figures 2-5 and 2-6.

In the semantics of Pcut we use an additional construction. If τ : I → JN,∆K define

(strict) τ◦−M,Γ : JM,Γ, N⊥K → JM,Γ,∆K to be unit( ◦ (τ ( idJM,ΓK) if |∆| = 0 and pascn
( ◦

(Λ−nΛ−1
I τ ( idJM,ΓK) if |∆| = n + 1. Define (strict) τ◦+P,Γ : JP,Γ,∆K → JP,Γ, N⊥K to be

(idJP,ΓK®τ)◦unit−1
® if |∆| = 0 and (id®Λ−nΛ−1

I τ)◦ ((idJP,ΓK®sym)◦pasc−1)n if |∆| = n+1. In

some of the rules in Figure 2-6 we omit some pasc isomorphisms for clarity.

2.4 Full Completeness

We now prove a strong full completeness result for the games model of WS: every total

strategy on a game denoted by a formula is the denotation of a unique analytic proof

of that formula (i.e. one which only uses the core rules). This exhibits a strong corre-

spondence between syntax and semantics, and establishes admissibility of all non-core

rules.



Figure 2-4: Categorical Semantics for WS (core rules)

P1
(dist0−,Γ)−1 : J` 1,ΓK

P>
id⊥ : J`>K

σ : J` M, N,ΓK τ : J` N, M,ΓK
P⊗

JΓK−(dec−1)◦dist−1
−,Γ ◦〈σ,τ〉 : J` M⊗N,ΓK

σ : J` M,ΓK τ : J` N,ΓK
P&

dist−1
−,Γ ◦〈σ,τ〉 : J` M&N,ΓK

σ : J`Q,P,ΓK
PO2

σ◦ JΓK+(wk◦ sym) : J` POQ,ΓK
σ : J` P,Q,ΓK

PO1
σ◦ JΓK+(wk) : J` POQ,ΓK

σ : J` P,∆K
P⊕1

σ◦ J∆K+(π1) : J` P ⊕Q,∆K
σ : J`Q,∆K

P⊕2
σ◦ J∆K+(π2) : J` P ⊕Q,∆K

σ : J`⊥,POQ,ΓK
PO⊥ JΓK−(pasc( ◦ (sym( id))◦σ : J`⊥,P,Q,ΓK

σ : J` PK
P+
⊥ ΛI (σ) : J`⊥,PK

σ : J`⊥,P ®N,ΓK
P®
⊥ JΓK−(lfe−1)◦σ : J`⊥,P, N,ΓK

σ : J` NK
P−
> unit( ◦ (σ( id) : J`>, NK

σ : J`>, M⊗N,ΓK
P⊗
>

σ◦ JΓK+((sym( id)◦pasc−1
( ) : J`>, M, N,ΓK

σ : J`>, N�P,ΓK
P�
> σ◦ JΓK+(lfe) : J`>, N,P,ΓK

σ : J`⊥,ΓK
P−
⊥ JΓK−(abs−1)◦σ : J`⊥, N,ΓK

σ : J` A,P,ΓK
P�

σ : J` A�P,ΓK

σ : J>,ΓK
P+
> σ◦ JΓK+(abs) : J>,P,ΓK

σ : J` A, N,ΓK
P®

σ : J` A®N,ΓK



Figure 2-5: Categorical Semantics for WS (other rules, part 1)

σ : J` M′,Γ, M, N,∆K
J∆K−(psym)◦σ : J` M′,Γ, N, M,∆K

σ : J` P,Γ, M, N,∆K
σ◦ J∆K+(psym() : J` P,Γ, N, M,∆K

σ : J` M,Γ,P,Q,∆K
J∆K−(psym()◦σ : J` M,Γ,Q,P,∆K

σ : J` P ′,Γ,P,Q,∆K
σ◦ J∆K+(psym) : J` P ′,Γ,Q,P,∆K

σ : J` P,Γ, M,∆K
σ◦ J∆K+((af( id)◦unit−1

( ) : J` P,Γ,∆K
σ : J` N,Γ, M,∆K

J∆K−(unit® ◦ (id®af))◦σ : J` N,Γ,∆K

σ : J` M,Γ,∆K
J∆K−((af( id)◦unit−1

( )◦σ : J` M,Γ,P,∆K
σ : J` P,Γ,∆+K

σ◦ J∆K−(unit® ◦ (id®af)) : J` P,Γ,Q,∆+K

σ : J` N,Γ,∆K
J∆K−(unit−1

® )◦σ : J` N,Γ,1,∆K
σ : J` P,Γ,∆K

σ◦ J∆K+(unit() : J` P,Γ,1,∆K
σ : J` M,Γ,∆K

J∆K−(unit−1
( )◦σ : J` M,Γ,0,∆K

σ : J` P,Γ,∆K
σ◦ J∆K+(unit®) : J` P,Γ,0,∆K

σ : J` M′,Γ, M, N,∆K
J∆K−(pasc)◦σ : J` M′,Γ, M⊗N,∆K

σ : J` P,Γ, M, N,∆K
σ◦ J∆K+(pasc() : J` P,Γ, M⊗N,∆K

σ : J` P ′,Γ,P,Q,∆K
σ◦ J∆K+(pasc−1) : J` P ′,Γ,POQ,∆K

σ : J` M,Γ,P,Q,∆K
J∆K+(pasc−1

( )◦σ : J` M,Γ,POQ,∆K

σ : J` M,Γ,Pi,∆K
J∆K−(πi ( id)◦σ : J` M,Γ,P1 ⊕P2,∆K

σ : J`Q,Γ,Pi,∆K
σ◦ J∆K+(id®πi) : J`Q,Γ,P1 ⊕P2,∆K

σ : J` N,Γ, M1&M2,∆K
J∆K−(id®πi)◦σ : J` N,Γ, Mi,∆K

σ : J`Q,Γ, M1&M2,∆K
σ◦ J∆K+(πi ( id) : J`Q,Γ, Mi,∆K



Figure 2-6: Categorical Semantics for WS (other rules, part 2)

σ : J` M,Γ,∆+K τ : J` N,∆+
1 KPmul

ΛIΛ(wk◦ (Λ−1
I (σ)⊗Λ−1

I (τ))) : J` M,Γ, N,∆+,∆+
1 K

σ : J` M,Γ, N⊥,Γ1K τ : J` N,∆+K
Pcut JΓ1K−(τ◦−M,Γ)◦σ : J` M,Γ,∆+,Γ1K

σ : J` P,Γ, N⊥,Γ1K τ : J` N,∆+K
Pcut

σ◦ JΓ1K+(τ◦+P,Γ) : J` P,Γ,∆+,Γ1K

Pid
ΛI (id) : J` N, N⊥K

σ : J` N⊥K τ : J` N,QK
P0

cut
σ◦Λ−1

I (τ) : J`QK

σ : J` M,Γ,PK τ : J` N,∆+K
P(

psym( ◦ΛI (Λ−1
I (τ)(Λ−1

I (σ)) : J` M,Γ,P ®N,∆+K

σ : J` N,Q,∆+K
Pid®

ΛIΛ((id®Λ−1Λ−1
I (σ)◦ sym)◦pasc® ◦wk◦ sym) : J` M, N, M⊥�Q,∆+K

We will first describe this proof-extraction procedure in our model of games and

strategies, and then give categorical axioms sufficient for a model of WS to enjoy this

full completeness result.

2.4.1 Reification of Strategies

We define a procedure reify which transforms a strategy on a formula object into a proof

of that formula. It may be seen as a semantics-guided proof search procedure: given

a strategy σ on the interpretation of Γ, reify finds a proof which denotes it. Reading

upwards, the procedure first seeks to decompose the head formula into a unit (nullary

connective) using the head introduction rules. If this unit is 1, we are done. It cannot

be 0, as there are no (total) strategies on this game. If the unit is > or ⊥, the procedure

then consolidates the tail of Γ into a single formula, using the core elimination rules.

Once this is done, the head unit is removed using P+
⊥ or P−

>, strictly decreasing the size

of the sequent. These steps are then repeated until termination.

• The case Γ= 0,Γ′ is impossible: there are no total strategies on this game.

• If Γ= 1,Γ′ then σ must be the empty strategy, since it is the unique total strategy

on this game. This is the interpretation of the proof P1.



• If Γ => then σ must similarly be the unique total strategy on this game, i.e. the

interpretation of P>.

• If Γ =>,P,Γ′ then σ can never play in P since if it did the play restricted to >,P

would not be alternating. Thus σ is a strategy on >,Γ′. We can call reify inductively

yielding a proof of `>,Γ′, and apply P+
> to yield a proof of >,P,Γ.

• If Γ=>, N,P,Γ′ then σ is a total strategy on >, N�P,Γ up to retagging and we can

proceed inductively using P�
> . If Γ=>, N, M,Γ′ we can proceed similarly, using P⊗

>.

• If Γ=>, N then σ is a total strategy on ↓ N: we can strip off the first move yielding

a total strategy on N, apply reify inductively yielding a proof of ` N, and finally

apply P−
> yielding a proof of `>, N.

• The case Γ = ⊥ is impossible: there are no total strategies on this game. Other

cases where ⊥ is the head formula proceed as with >: if the tail is a single positive

formula, we remove the first move and apply P+
⊥, otherwise we shorten the tail

using P−
⊥, P®

⊥ or PO⊥ .

• If Γ = A ® N,Γ′ then σ is also a strategy on A, N,Γ. We can call reify inductively

yielding a proof of ` A, N,Γ that denotes σ, and apply P®. We can proceed similarly

in the following case Γ= A�P,Γ′.

• If Γ = M&N,Γ′ then we can split σ into those plays that start with M and those

that start with N. This yields total strategies on M,Γ and N,Γ respectively, which

we can reify inductively and apply P&.

• If Γ = M ⊗N,Γ′ then we can split σ into those plays that start with M and those

that start with N. This yields total strategies on M, N,Γ and N, M,Γ respectively,

which we can reify inductively and apply P⊗.

• If Γ= P⊕Q,Γ then σ specifies a first move that must either be in P or in Q. In the

former case, we have a strategy on P,Γ and can reify inductively, finally applying

P⊕1. In the latter case, we have a strategy on Q,Γ and can reify inductively and

apply P⊕2. The case of Γ= POQ,Γ is similar.

In Proposition 2.4.3 we show that reify is well defined by giving a measure on sequents

that decreases on each call to the inductive hypothesis.

2.4.2 Example of Reification

We next give an example of reification. We write reifyΓ for the operation of reification

from total strategies on JΓK to proofs of ` Γ. We will sometimes write proofs in term



notation, so P⊗(p1, p2) denotes the proof obtained by applying the P⊗ rule to the proofs

p1 and p2.

We can restrict the counter strategy given in Section 2.1.4 to the bounded types

given in Section 2.2.4. In particular, we consider the counter strategy on the denotation

of Σ⊗N1 = (⊥�>)⊗ (⊥� (>⊕>)). We will show how this strategy is reified to a proof of

this formula in WS.

To recall, the game JΣK acts as a button that can be pushed (we write q for the

opening move and a for its response). The game JN1K acts as a Boolean (with an opening

move q and two responses 0 and 1). A play in JΣ⊗N1K is either a play in JΣK followed

by a play in JN1K, or vice versa (since the games are only two moves long, the switching

behaviour simplifies to this situation). Consider the strategy σ : JΣ⊗N1K which responds

to the Boolean component with 0 if the switch has not been pressed, and 1 if it has

been pressed. Then the maximal plays in σ are q1a1q212 and q202q1a1. Prefixes of the

former form a strategy σ1 on JΣ,N1K= JΣ®N1K and prefixes of the latter form a strategy

σ2 on JN1,ΣK= JN1 ®ΣK. Then

• reifyΣ⊗N1
(σ)=P⊗(reifyΣ,N1

(σ1),reifyN1,Σ(σ2)) as the outermost connective of the for-

mula is ⊗.

• For reify(σ1):

– reifyΣ,N1
(σ1) = reify⊥�>,N1

(σ1) = P�(reify⊥,>,N1
(σ1)) as the outermost connec-

tive of the head is �.

– reify⊥,>,N1
(σ1)=P®

⊥(reify⊥,>®N1
(σ1)) as the head formula is ⊥ and the tail con-

sists of a positive formula followed by a negative formula.

– reify⊥,>®N1
(σ1)=P+

⊥(reify>®N1
(σ′

1)) where σ′
1 is the strategy on J>®N1K whose

maximal plays are given by a1q212 — we have removed the first move from

σ1.

– reify>®N1
(σ′

1)=P®(reify>,N1
(σ′

1)) as the outermost connective is ®.

– reify>,N1
(σ′

1) =P−
>(reifyN1

(σ′′
1)) where σ′′

1 : JN1K has maximal plays of the form

q1 — we have removed the first move from σ′
1 (and relabelled).

– reifyN1=⊥�(>⊕>)(σ′′
1)=P�(reify⊥,>⊕>) as the outermost connective is �.

– reify⊥,>⊕>(σ′′
1) = P+

⊥(reify>⊕>(σ′′′
1 )) where σ′′′

1 : J>⊕>K has a single maximal

play 1.

– To calculate reify>⊕>(σ′′′
1 ) we notice that the outer connective is ⊕, so we must

look at the first move of σ′′′
1 to determine which rule to use. Since σ′′′

1 be-

gins with a move in the right hand component, we note that reify>⊕>(σ′′′
1 ) =

P⊕2(reify>(a)) where a is the unique total strategy on J>K.



– Then reify>(a)=P>.

So reify(σ1)=P�(P®
⊥(P+

⊥(P®(P−
>(P�(P+

⊥(P⊕2(P>)))))))).

• We can similarly calculate

reifyN1®Σ(σ2)=P�(P®
⊥(P+

⊥(P®(P⊕1(P−
>(P�(P+

⊥(P>)))))))).

So, reify(σ) is the following proof:

P> `>P⊕2 `>⊕>P+
⊥ `⊥,>⊕>

P� `N1 =⊥� (>⊕>)
P−
> `>,N1P® `>®N1P+

⊥ `⊥,>®N1P®
⊥ `⊥,>,N1P� `Σ,N1 =⊥�>,N1

P> `>P+
⊥ `⊥,>

P� `Σ=⊥�>P−
> `>,Σ

P⊕1 `>⊕>,Σ
P® ` (>⊕>)®Σ

P+
⊥ `⊥, (>⊕>)®Σ

P®
⊥ `⊥,>⊕>,Σ

P� `N1,Σ=⊥� (>⊕>),Σ
P⊗ `Σ⊗N1

2.4.3 Complete WS-categories

In the above procedure we use properties of the game model that do not follow from the

definition of a WS-category. We now give further categorical axioms in the style of [3],

capturing the properties of a WS-category which enable full completeness. Rather than

identifying a class of categorical models with many or varied examples (precluded by the

strength of the result itself), these axioms allow us to give a rigorous and abstract proof

of full completeness using the structure of a WS-category.

Definition A complete WS-category is a WS-category such that:

1a The unique map i :∅⇒C (I,⊥) is a bijection.

1b The map d = [λ f . f ◦π1,λg. f ◦π2] : C (M,⊥)+C (N,⊥) ⇒ C (M × N,⊥) is a bijection.

(π-atomicity [3]).

2 The map _(⊥ : C (I, M)⇒C (M (⊥, I (⊥) is a bijection.

These axioms capture the properties of determinacy, totality and the object ⊥.

Proposition 2.4.1 Gt is a complete WS-category.



Figure 2-7: Reification of Strategies as Analytic Proofs

reify1,Γ(σ) = P1
reify⊥,N,Γ(σ) = P−

⊥(reify⊥,Γ(JΓK−(abs)◦σ))
reify⊥,P (σ) = P+

⊥(reifyP (Λ−1
I (σ)))

reify⊥,P,Q,Γ(σ) = PO⊥ (reify⊥,POQ,Γ(JΓK−((sym( id)◦pasc−1
( ◦σ)))

reify⊥,P,N,Γ(σ) = P−
⊥(reify⊥,P®N,Γ(JΓK−(lfe)◦σ))

reifyM&N,Γ(σ) = P&(reifyM,Γ(π1 ◦dist−,Γ ◦σ))(reifyN,Γ((π2 ◦dist−,Γ ◦σ))
reifyM⊗N,Γ(σ) = P⊗(reifyM,N,Γ(π1 ◦σ′),reifyN,M,Γ(π2 ◦σ′))

where σ′ = dist−,Γ ◦ JΓK−(dec)◦σ
reifyA®N,Γ(σ) = P®(reifyA,N,Γ(σ))
reifyA�P,Γ(σ) = P�(reifyA,P,Γ(σ))
reify>(σ) = P>
reify>,P,Γ(σ) = P−

⊥(reify⊥,Γ(σ◦ JΓK+(abs−1)))
reify>,N (σ) = P−

>(reifyN ((_(⊥)−1(unit−1
( ◦σ)))

reify>,N,M,Γ(σ) = P⊗
>(reify>,N⊗M,Γ(σ◦ JΓK+(pasc( ◦ (sym( id))))

reify>,N,P,Γ(σ) = P�
> (reify>,N�P,Γ(σ◦ JΓK+(lfe−1)))

reifyP⊕Q,Γ(σ) = [P⊕1 ◦ reifyP,Γ,P⊕2 ◦ reifyQ,Γ]◦d−1(σ◦dist−1
+,Γ)

reifyPOQ,Γ(σ) = [PO1 ◦ reifyP,Q,Γ,PO2 ◦ reifyQ,P,Γ]◦d−1(σ◦ JΓK+(dec−1)◦dist−1
+,Γ)

Proof Axiom (1a) holds as there are no total strategies on the game ⊥. Axiom (1b)

holds since total strategies M × N → ⊥ correspond to total strategies on the positive

game M⊥⊕N⊥ and any such strategy must either play its first move in M⊥ or N⊥ (but

not both). Axiom (2) holds since maps M (⊥→ I (⊥ correspond to total strategies on

the positive game ↓ M which correspond to total strategies on M.

G f is also a complete WS-category, but G is not: for example, partiality allows the empty

strategy on I (⊥ violating axiom (1a).

2.4.4 Full Completeness for Core Rules

We prove the following full completeness result.

Theorem 2.4.2 In any complete WS-category, if σ : J` ΓK then σ is the denotation of a

unique analytic proof reifyΓ(σ)`Γ.

reifyΓ is defined inductively in Figure 2-7.

Proposition 2.4.3 reifyΓ is a well-defined, terminating procedure.



Proof We will define a measure on sequents that strictly decreases in the inductive call.

Thus, reify is defined inductively on this measure.

Let N denote the poset of naturals with the usual ordering, and N∪ {∞} its extension

with ∞ dominating all finite elements in N. The codomain of our measure is N×N∪
{∞}×N, ordered lexicographically. This is a well-ordered set — there are no infinitely

descending chains.

• Let |Γ| denote the total size of a sequent. Formally, |1| = |0| = |⊥| = |>| = 1, |A⊗B| =
|A®B| = |A&B| = |A�B| = |AOB| = |A⊕B| = |A,B| = 1+|A|+ |B|.

• Let tl(A,Γ) denote the length of Γ as a list if A ∈ {>,⊥} or ∞ otherwise.

• Let hd(A,Γ) denote |A|.

Our procedure is defined lexicographically on 〈|Γ|,tl(Γ),hd(Γ)〉. We can see that each time

reify is used recursively, this measure strictly decreases in the lexicographical ordering

on N×N∪ {∞}×N:

• In the case that Γ = >, N or ⊥,P the first measure decreases in the call to the

inductive hypothesis.

• In other cases where Γ= A,Γ′ with A ∈ {>,⊥} the first measure does not increase,

and the second measure strictly decreases as the tail is shortened in the call to the

inductive hypothesis.

• In the case that Γ= A,Γ′ with A 6∈ {>,⊥} the head formula is decomposed. The first

measure does not increase, and either the second or third measure does (the size

of the head is decreased, possibly to ⊥ or >).

For the concrete games model, we could replace the first measure by depth(σ) (i.e. the

length of the longest play in σ). Again, this measure strictly decreases if Γ=⊥,P or >, N

and does not increase in other cases.

We can complete the proof of Theorem 2.4.2 by showing that reifyΓ gives an inverse to

J−KΓ.

Lemma 2.4.4 For all σ : J`ΓK we have JreifyΓ(σ)K=σ.

Proof We proceed by induction on our reification measure 〈|Γ|,tl(Γ),hd(Γ)〉 using equa-

tions that hold in the categorical model. We perform case analysis on Γ.

• If Γ= 1,∆ then both LHS and RHS are mappings from I into the terminal object,

hence they must be equal.



• The case Γ=⊥ is impossible, as by axiom (1a) there are no maps I →⊥.

• If Γ=⊥, N,∆ then Jreify⊥,N,∆(σ)K= JP−
⊥(reify⊥,∆(J∆K−(abs)◦σ))K=

J∆K−(abs−1)◦ Jreify⊥,∆(J∆K−(abs)◦σ)K= J∆K−(abs−1)◦ J∆K−(abs)◦σ=σ as required.

• If Γ=⊥,P then Jreify⊥,P (σ)K= JP+
⊥(reifyP (Λ−1

I (σ))K=ΛI (JreifyP (Λ−1
I (σ)K))=ΛIΛ

−1
I (σ)=

σ.

• If Γ=⊥,P, N,∆ then Jreify⊥,P,N,∆(σ)K= JP®
⊥(reify⊥,P®N,∆(J∆K−(lfe)◦σ))K=

J∆K−(lfe−1)◦ Jreify⊥,P®N,∆(J∆K−(lfe)◦σ)K= J∆K−(lfe−1)◦ J∆K−(lfe)◦σ=σ as required.

• If Γ=⊥,P,Q,∆ then Jreify⊥,P,Q,∆(σ)K= JPO⊥ (reify⊥,POQ,∆(J∆K−((sym( id)◦pasc−1
( )◦

σ))K= J∆K−(pasc( ◦ (sym( id))◦ Jreify⊥,POQ,∆(J∆K−((sym( id)◦pasc−1
( )◦σ)K=

J∆K−(pasc( ◦ (sym( id))◦ J∆K−((sym( id)◦pasc−1
( )◦σ=σ as required.

• For Γ= M&N,∆ we have JreifyM&N,∆(σ)K= JP&(reifyM,∆(π1◦dist−,∆◦σ),reifyN,∆(π2◦
dist−,∆◦σ))K= dist−1

−,∆◦〈JreifyM,∆(π1◦dist−,∆◦σ)K,JreifyN,∆(π2◦dist−,∆◦σ)K〉 = dist−1
−,∆◦

〈π1,π2〉◦dist−,∆ ◦σ= dist−1
−,∆ ◦ id◦dist−,∆ ◦σ=σ.

• For Γ = M ⊗N,∆ we have JreifyM⊗N,∆(σ)K = JP⊗(reifyM,N,∆(π1 ◦dist−,∆ ◦ J∆K−(dec)◦
σ),reifyN,M,∆(π2 ◦ dist−,∆ ◦ J∆K−(dec) ◦σ))K = J∆K−(dec−1) ◦ dist−1

−,∆ ◦ 〈JreifyM,N,∆(π1 ◦
dist−,∆◦J∆K−(dec)◦σ)K,JreifyN,M,∆(π2◦dist−,∆◦J∆K−(dec)◦σ)K〉 = J∆K−(dec−1)◦dist−1

−,∆◦
〈π1◦dist−,∆◦J∆K−(dec)◦σ,π2◦dist−,∆◦J∆K−(dec)◦σ〉 = J∆K−(dec−1)◦dist−1

−,∆◦〈π1,π2〉◦
dist−,∆◦J∆K−(dec)◦σ= J∆K−(dec−1)◦dist−1

−,∆◦id◦dist−,∆◦J∆K−(dec)◦σ=σ as required.

• If Γ= M®N,∆ then JreifyΓ(σ)K= JP®(reifyM,N,∆(σ))K= JreifyM,N,∆(σ)K=σ.

• If Γ= M�P,∆ then JreifyΓ(σ)K= JP�(reifyM,P,∆(σ))K= JreifyM,P,∆(σ)K=σ.

• If Γ = > then σ : ⊥ → ⊥. But C (⊥,⊥) ∼= C (I ( ⊥, I ( ⊥) ∼= C (I, I) by axiom (2).

Hence there is a unique map ⊥→⊥ and we must have σ= JP>K.

• If Γ=>,P,∆ then Jreify>,P,∆(σ)K= JP+
>(reify>,∆(σ◦ J∆K+(abs−1)))K=

Jreify>,∆(σ◦ J∆K+(abs−1))K◦ JΓK(abs)=σ◦ J∆K+(abs−1)◦ J∆K+(abs)=σ as required.

• If Γ=>, N then Jreify>,N (σ)K= JP−
>(reifyN ((_( id⊥)−1(unit−1

( ◦σ)))K=
unit( ◦ (JreifyN ((_ ( id⊥)−1(unit−1

( ◦σ))K( id) = unit( ◦ ((_ ( id⊥)−1(unit−1
( ◦σ) (

id)= unit( ◦unit−1
( ◦σ=σ.

• If Γ=>, N,P,∆ then Jreify>,N,P,∆(σ)K= JP�
> (reify>,N�P,∆(σ◦ J∆K+(lfe−1)))K=

Jreify>,N�P,∆(σ◦ J∆K+(lfe−1))K◦ J∆K+(lfe)=σ◦ J∆K+(lfe−1)◦ J∆K+(lfe)=σ as required.



• If Γ=>, N, M,∆ then Jreify>,N,M,∆(σ)K= JP⊗
>(reify>,N⊗M,∆(σ◦ J∆K+(pasc( ◦ (sym(

id))))K = Jreify>,N⊗M,∆(σ ◦ J∆K+(pasc( ◦ (sym ( id)))K ◦ J∆K+((sym ( id) ◦ pasc−1
( ) =

σ◦ J∆K+(pasc( ◦ (sym( id))◦ J∆K+((sym( id)◦pasc−1
( )=σ as required.

• If Γ = P1 ⊕ P2,∆ then JreifyP1⊕P2,∆(σ)K = J[P⊕1 ◦ reifyP1,∆,P⊕2 ◦ reifyP2,∆] ◦ d−1(σ ◦
dist−1

+,∆)K. Suppose d−1(σ ◦ dist−1
+,∆) = ini(τ), so τ ◦ πi = σ ◦ dist−1

+,∆. Then J[P⊕1 ◦
reifyP1,∆,P⊕2◦reifyP2,∆]◦d−1(σ◦dist−1

+,∆)K= JP⊕ i(reifyPi ,∆(τ))K= JreifyPi ,∆(τ)K◦J∆K+(πi)=
τ◦πi ◦dist+,∆ =σ◦dist−1

+,∆ ◦dist+,∆ =σ.

• If Γ= P1OP2,∆ then JreifyP1OP2,∆(σ)K= J[PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(σ◦
J∆K+(dec−1)◦dist−1

+,∆)K. Suppose d−1(σ◦ J∆K+(dec−1)◦dist−1
+,∆) = ini(τ), so τ◦πi = σ◦

J∆K+(dec−1)◦dist−1
+,∆.

If i = 1 then J[PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(σ◦ J∆K+(dec)◦dist−1
+,∆)K=

JPO1(reifyP1,P2,∆(τ))K= JreifyP1,P2,∆(τ)K◦J∆K+(wk)= JreifyP1,P2,∆(τ)K◦J∆K+(π1 ◦dec)=
τ◦J∆K+(π1◦dec)= τ◦π1◦dist+,∆◦J∆K+(dec)=σ◦J∆K+(dec−1)◦dist−1

+,∆◦dist+,∆◦J∆K+(dec)=
σ.

If i = 2 then J[PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(σ◦ J∆K+(dec)◦dist−1
+,∆)K=

JPO2(reifyP2,P1,∆(τ))K = JreifyP2,P1,∆(τ)K◦ J∆K+(wk◦ sym) = JreifyP2,P1,∆(τ)K◦ J∆K+(π2 ◦
dec)= τ◦J∆K+(π2◦dec)= τ◦π2◦dist+,∆◦J∆K+(dec)=σ◦J∆K+(dec−1)◦dist−1

+,∆◦dist+,∆◦
J∆K+(dec)=σ.

• If Γ= P ®M,∆ then JreifyP®M,∆(σ)K= JP®(reifyP,M,∆(σ))K= JreifyP,M,∆(σ)K=σ.

• If Γ= P�Q,∆ then JreifyP�Q,∆(σ)K= JP�(reifyP,Q,∆(σ)K= JreifyP,Q,∆(σ)K=σ.

Lemma 2.4.5 For any analytic proof p of `Γ we have reifyΓ(JpK)= p.

Proof We proceed by induction on p.

• If p = P1 then our conclusion holds since there is a unique analytic proof of ` 1.

This is also true for p =P>.

• If p =P+
⊥(p′) with Γ=⊥,P then reifyΓ(JpK)=P+

⊥(reifyP (Λ−1
I (JpK))=

P+
⊥(reifyP (Λ−1

I ΛIJp′K))=P+
⊥(reifyP (Jp′K))=P+

⊥(p′)= p.

• If p =P−
⊥(p′) with Γ=⊥, M,∆ then reify⊥,M,∆(JP−

⊥(p′)K)
=P−

⊥(reify⊥,∆(JΓK−(abs)◦ JP−
⊥(p′)K))

=P−
⊥(reify⊥,∆(JΓK−(abs)◦ JΓK−(abs−1)◦ Jp′K))

=P−
⊥(reify⊥,∆(Jp′K))

=P−
⊥(p′)= p as required.



• If p =PO⊥ (p′) with Γ=⊥,P,Q,∆ then reify⊥,P,Q,∆(JPO⊥ (p′)K)
=PO⊥ (reify⊥,POQ,∆(JΓK−((sym( id)◦pasc−1

( )◦ JP−
⊥(p′)K))

=PO⊥ (reify⊥,POQ,∆(JΓK−((sym( id)◦pasc−1
( )◦ JΓK−(pasc( ◦ (sym( id))◦ Jp′K))

=PO⊥ (reify⊥,POQ,∆(Jp′K))=PO⊥ (p′)= p as required.

• If p =P®
⊥(p′) with Γ=⊥,P, N,∆ then reify⊥,P,N,∆(JP®

⊥(p′)K)
=P®

⊥(reify⊥,P®N,∆(JΓK−(lfe)◦ JP−
⊥(p′)K))

=P®
⊥(reify⊥,P®N,∆(JΓK−(lfe)◦ JΓK−(lfe−1)◦ Jp′K))

=P®
⊥(reify⊥,P®N,∆(Jp′K))

=P®
⊥(p′)= p as required.

• If p =P&(p1, p2) with Γ= M&N,∆ then reifyΓ(JpK)
=P&(reifyM,∆(π1 ◦dist−,∆ ◦ JpK),reifyN,∆(π2 ◦dist−,∆ ◦ JpK))
=P&(reifyM,∆(π1◦dist−,∆◦dist−1

−,∆◦〈Jp1K,Jp2K〉),reifyN,∆(π2◦dist−,∆◦dist−1
−,∆◦〈Jp1K,Jp2K〉))

=P&(reifyM,∆(Jp1K),reifyN,∆(Jp2K))
=P&(p1, p2)= p.

• If p =P⊗(p1, p2) with Γ= M⊗N,∆ then reifyΓ(JpK)
=P⊗(reifyM,N,∆(π1 ◦dist−,∆ ◦J∆K−(dec)◦JpK),reifyN,M,∆(π2 ◦dist−,∆ ◦J∆K−(dec)◦JpK))
=P⊗(reifyM,N,∆(π1◦dist−,∆◦J∆K−(dec)◦J∆K−(dec−1)◦dist−1

−,∆◦〈Jp1K,Jp2K〉),reifyN,M,∆(π2◦
dist−,∆ ◦ J∆K−(dec)◦ J∆K−(dec−1)◦dist−1

−,∆ ◦〈Jp1K,Jp2K〉))
=P⊗(reifyM,∆(Jp1K),reifyN,∆(Jp2K))
=P⊗(p1, p2)= p.

• If p = P−
>(p′) and Γ=>, N then reifyΓ(JpK) = P−

>(reifyN ((_ ( id⊥)−1(unit−1
( ◦ JpK))) =

P−
>(reifyN ((_ ( id⊥)−1(unit−1

( ◦unit( ◦ (Jp′K( id)))) = P−
>(reifyN ((_ ( id⊥)−1(Jp′K(

id)))=P−
>(reifyNJp′K)=P−

>(p′)= p.

• If p =P+
>(p′) then reify>,P,∆(JP+

>(p′)K)=P+
>(reify>,∆(JP+

>(p′)K◦ J∆K+(abs−1)))=
P+
>(reify>,∆(Jp′K ◦ J∆K+(abs) ◦ J∆K+(abs−1))) = P+

>(reify>,∆(Jp′K)) = P+
>(p′) = p as re-

quired.

• If p =P�
> (p′) then reify>,N,P,∆(JP�

> (p′)K)=P�
> (reify>,N�P,∆(JP�

> (p′)K◦ J∆K+(lfe−1)))=
P�
> (reify>,N�P,∆(Jp′K ◦ J∆K+(lfe) ◦ J∆K+(lfe−1))) = P�

> (reify>,N�P,∆(Jp′K)) = P�
> (p′) = p

as required.

• If p = P⊗
>(p′) then reify>,N,M,∆(JP⊗

>(p′)K) = P�
> (reify>,N⊗M,∆(JP⊗

>(p′)K◦ J∆K+(pasc( ◦
(sym( id)))) = P⊗

>(reify>,N⊗M,∆(Jp′K ◦ J∆K+(pasc( ◦ (sym( id)) ◦ J∆K+((sym( id) ◦
pasc−1

( )))=P⊗
>(reify>,N⊗M,∆(Jp′K))=P⊗

>(p′)= p as required.

• If p = P⊕ i(p′) with Γ = P1 ⊕P2,∆ then reifyΓ(JpK) = reifyΓ(Jp′K ◦ J∆K+(πi)) = [P⊕1 ◦
reifyP1,∆,P⊕2◦reifyP2,∆]◦d−1(Jp′K◦J∆K+(πi)◦dist−1

+,∆)= [P⊕1◦reifyP1,∆,P⊕2◦reifyP2,∆]◦



d−1(Jp′K◦πi)= [P⊕1◦reifyP1,∆,P⊕2◦reifyP2,∆]◦d−1(d(ini(Jp′K)))= [P⊕1◦reifyP1,∆,P⊕2◦
reifyP2,∆]◦ ini(Jp′K)=P⊕ i ◦ reifyPi ,∆(Jp′K)=P⊕ i(p′)= p as required.

• If p = PO1(p′) with Γ = P1OP2,∆ then reifyΓ(JpK) = reifyΓ(Jp′K ◦ J∆K+(wk)) = [PO1 ◦
reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(Jp′K◦ J∆K+(wk)◦ J∆K+(dec−1)◦dist−1

+,∆)=
[PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(Jp′K◦J∆K+(π1)◦dist−1

+,∆)= [PO1◦reifyP1,P2,∆,PO2◦
reifyP2,P1,∆]◦d−1(Jp′K◦π1) = [PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(d(in1(Jp′K))) =
PO1(reifyP1,P2,∆(Jp′K))=PO1(p′)= p as required.

• If p = PO2(p′) with Γ = P1OP2,∆ then reifyΓ(JpK) = reifyΓ(Jp′K ◦ J∆K+(wk ◦ sym)) =
[PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(Jp′K◦J∆K+(wk◦sym)◦J∆K+(dec−1)◦dist−1

+,∆)=
[PO1◦reifyP1,P2,∆,PO2◦reifyP2,P1,∆]◦d−1(Jp′K◦J∆K+(π2)◦dist−1

+,∆)= [PO1◦reifyP1,P2,∆,PO2◦
reifyP2,P1,∆]◦d−1(Jp′K◦π2) = [PO1 ◦ reifyP1,P2,∆,PO2 ◦ reifyP2,P1,∆]◦d−1(d(in2(Jp′K))) =
PO2(reifyP2,P1,∆(Jp′K))=PO2(p′)= p as required.

• Finally, if p =P®(p′) then reify(JP®(p′)K)=P®(reify(Jp′K))=P®(p′)= p. If p =P�(p′)
then reify(JP�(p′)K)=P�(reify(Jp′K))=P�(p′)= p as required.

This completes the proof of Theorem 2.4.2. This theorem yields the following conse-

quences:

Corollary 2.4.6 In any complete WS-category, morphisms C (JMK,JNK) correspond bi-

jectively to analytic proofs of ` N, M⊥.

Proof Such morphisms correspond to C (I,JMK( JNK)=C (I,JN, M⊥K).

Corollary 2.4.7 For each proof p ` Γ, there is a unique analytic proof p′ ` Γ with Jp′K=
JpK. Thus, all non-core proof rules are admissible.

Proof Let p ` Γ be a proof. We can construct the proof p′ = reify(JpK)` Γ using only the

core rules. By Theorem 2.4.2 p′ is the unique analytic proof with Jp′K= JpK.

Remark The model of WS in G f is equivalence complete [55] — each arrow on a type

object is the denotation of a unique proof, and each object in the model is isomorphic to

a type object (each finite tree of plays can be constructed using the lifts and additives).

2.5 Cut Elimination

We have shown that the non-core rules are admissible via a reduction-free evaluation

with respect to a particular complete WS-category. However we do not know that such a

procedure is sound with respect to any other WS-category. We will address this here in

the case of cut elimination, by defining a corresponding syntactic procedure.



2.5.1 Cut Elimination Procedure

We describe a syntactic procedure to transform an analytic proof of ` A,Γ, N⊥ and an

analytic proof of ` N,P into an analytic proof of ` A,Γ,P. This is a special case of Pcut,

with∆+ a single formula P and Γ1 empty. We proceed by induction. The interesting cases

are the lifts: if A,Γ=⊥,Q then `⊥,Q, N⊥ must have been concluded from `QON⊥, i.e.

` Q, N⊥ or ` N⊥,Q. In the first case we can apply the inductive hypothesis, but in the

second case we cannot. We need an auxiliary procedure cut2 which turns analytic proofs

of ` N⊥,Q and ` N,P into a analytic proof of `QOP (from which we can deduce `⊥,Q,P

as required). If we think of this procedure as a representation of strategy composition,

this corresponds to the situation when some player is set to play in N next and so the

next observable move could be in Q or P.

In order to do define cut and cut2, we require further auxiliary procedures:

• A procedure symPO mapping analytic proofs of ` POQ,Γ to analytic proofs of `
QOP,Γ. All proofs of ` POQ,Γ must end with PO1 or PO2. Set symPO(PO1(p)) =
PO2(p) and symPO(PO2(p))=PO1(p).

• A procedure wkP which takes a proof of `Γ and produces a proof of `Γ,P.

• A procedure rem0 which takes a proof of ` Γ,0 and produces a proof of ` Γ. From

it we define the procedure unPO0 taking a proof of ` 0OP and yielding a proof of

` P defined by unPO0(PO2(p)) = rem0(p) (noting that there are no proofs of ` 0,P

and hence the argument must be of the form PO1(p)).

The procedures can be defined using usual diagrammatic notation. For brevity, we

only give this exposition for some representative cases, as given in Figures 2-8 and 2-9.

The full procedures are defined using a term notation based on the names of the core

proof rules in Figures 2-10, 2-11, 2-12 and 2-13.

Examination of the tensor case shows that the right premise is duplicated at a single

step, and so elimination of a cut in WS can take exponential time in the worst case.

A machine-checkable Agda script is available at [18] which formally shows that all

cases have been covered.

Termination

We need to justify termination of cut and cut2. In almost all cases, the inductive call is

structurally smaller (i.e. it is called on a subproof of the original proof). The exception is

in the case of cut(P+
⊥(y), g), where the inductive call occurs on wk0(y). The issue is that

wk0(y) is not a structurally smaller proof than P+
⊥(y). However, we can define a measure

which strictly decreases.



Figure 2-8: Diagram notation for cut elimination

` M,L,Γ, N⊥ ` L, M,Γ, N⊥

` M⊗L,Γ, N⊥ ` N,P
cut ` M⊗L,Γ,P

7→
` M,L,Γ, N⊥ ` N,P

cut ` M,L,Γ,P
` L, M,Γ, N⊥ ` N,P

cut ` L, M,Γ,P
` M⊗L,Γ,P

`Q,Γ, N⊥

`Q⊕R,Γ, N⊥ ` N,P
cut `Q⊕R,Γ,P

7→
`Q,Γ, N⊥ ` N,P

cut `Q,Γ,P
`Q⊕R,Γ,P

`Q, N⊥

`QON⊥

`⊥,QON⊥

`⊥,Q, N⊥ ` N,P
cut `⊥,Q,P

7→

`Q, N⊥ ` N,P
cut `Q,P

`QOP
`⊥,QOP
`⊥,Q,P

` N⊥,Q
`QON⊥

`⊥,QON⊥

`⊥,Q, N⊥ ` N,P
cut `⊥,Q,P

7→
` N⊥,Q ` N,P

cut2 `QOP
`⊥,QOP
`⊥,Q,P



Figure 2-9: Diagram notation for elimination of cut2

`>, M⊗L,Γ
`>, M,L,Γ

`⊥, M⊥OL⊥,Γ⊥,P
`⊥, M⊥,L⊥,Γ⊥,P

cut2 ` N⊥OP

7→ `⊥, M⊥OL⊥,Γ⊥,P `>, M⊗L,Γ
cut2 ` N⊥OP

` P
`⊥,P

`>
`>,P

cut2 ` N⊥OP
7→

` P
wk ` P, N⊥

` N⊥OP

` M, N⊥

` M�N⊥

`>, M�N⊥

`>, M, N⊥

` M⊥,P
` M⊥OP

`⊥, M⊥OP
`⊥, M⊥,P

cut2 ` N⊥OP

7→
` M⊥,P ` M, N⊥

cut2 ` PON⊥
symPO ` N⊥OP

` M,L,Γ
` M®L,Γ

` M⊥,L⊥,Γ⊥,P
` M⊥�L⊥,Γ⊥,P

cut2 ` N⊥OP

7→ ` M,L,Γ ` M⊥,L⊥,Γ⊥,P
cut2 ` N⊥OP

Figure 2-10: Cut Elimination Procedure for Core Rules (wkP :`Γ→`Γ,P)

wkP (P1) = P1 wkP (P®(p)) = P®(wkP (p))
wkP (P�(p) = P�(wkP (p)) wkP (P⊗(p, q)) = P⊗(wkP (p),wkP (q))
wkP (PO1(p) = PO1(wkP (p)) wkP (PO2(p) = PO2(wkP (p))
wkP (P&(p, q)) = P&(wkP (p),wkP (q)) wkP (P⊕1(p) = P⊕1(wkP (p))
wkP (P⊕2(p) = P⊕2(wkP (p)) wkP (P−

⊥(p) = P−
⊥(wkP (p))

wkP (P+
⊥(p)) = PO⊥ (P+

⊥(PO1(wkP (p)))) wkP (PO⊥ (p) = PO⊥ (wkP (p))
wkP (P®

⊥(p) = P®
⊥(wkP (p)) wkP (P−

>(p)) = P�
> (P−

>(P�(wkP (p))))
wkP (P>) = P+

>(P>) wkP (P+
>(p) = P+

>(wkP (p))
wkP (P⊗

>(p) = P⊗
>(wkP (p)) wkP (P�

> (p) = P�
> (wkP (p))

Figure 2-11: Cut Elimination Procedure for Core Rules (rem0 :`Γ,0→`Γ)

rem0(P1) = P1 rem0(P®(p)) = P®(rem0(p))
rem0(P�(p) = P�(rem0(p)) rem0(P⊗(p, q)) = P⊗(rem0(p),rem0(q))
rem0(PO1(p) = PO1(rem0(p)) rem0(PO2(p) = PO2(rem0(p))
rem0(P&(p, q)) = P&(rem0(p),rem0(q)) rem0(P⊕1(p) = P⊕1(rem0(p))
rem0(P⊕2(p) = P⊕2(rem0(p)) rem0(P−

⊥(p) = P−
⊥(rem0(p))

rem0(P+
⊥(p)) never happens rem0(P−

>(p)) never happens
rem0(P®

⊥(p) = P®
⊥(rem0(p)) rem0(P⊗

>(p) = P⊗
>(rem0(p))

rem0(PO⊥ (P+
⊥(PO1(p)))) = P+

⊥(rem0(p)) rem0(PO⊥ (p)) = PO⊥ (rem0(p))
rem0(P+

>(P>)) = P> rem0(P+
>(p) = P+

>(rem0(p))
rem0(P�

> (P−
>(P�(p)))) = P−

>(rem0(p)) rem0(P�
> (p)) = P�

> (rem0(p))



Figure 2-12: Cut Elimination Procedure for Core Rules (cut)

A Γ cut :` A,Γ, N⊥×` N,P → ` A,Γ,P
1 cut(P1, g) = P1
⊥ ε cut(P+

⊥(y), g) = P+
⊥(unPO0(cut2(wk0(y), g)))

⊥ Q cut(PO⊥ (P+
⊥(PO1(y))), g) = PO⊥ (P+

⊥(PO1(cut(y, g))))
⊥ Q cut(PO⊥ (P+

⊥(PO2(y))), g) = PO⊥ (P+
⊥(cut2(y, g)))

⊥ Q,R,Γ′ cut(PO⊥ (y), g) = PO⊥ (cut(y, g))
⊥ Q, M,Γ′ cut(P®

⊥(y), g) = P®
⊥(cut(y, g))

⊥ N,Γ′ cut(P−
⊥(y), g) = P−

⊥(cut(y, g))
> ε cut(P+

>(P>), g) = P+
>(P>)

> M cut(P�
> (P−

>(P�(y))), g) = P�
> (P−

>(P�(cut(y, g))))
> M,Q,Γ′ cut(P�

> (y), g) = P�
> (cut(y, g))

> M,L,Γ′ cut(P⊗
>(y), g) = P⊗

>(cut(y, g))
> R,Γ′ cut(P+

>(y), g) = P+
>(cut(y, g))

_⊗_ cut(P⊗(y, y′), g) = P⊗(cut(y, g),cut(y′, g))
_O_ cut(PO1(y), g) = PO1(cut(y, g))
_O_ cut(PO1(y), g) = PO2(cut(y, g))
_®_ cut(P®(y), g) = P®(cut(y, g))
_�_ cut(P�(y), g) = P�(cut(y, g))
_⊕_ cut(P⊕1(y), g) = P⊕1(cut(y, g))
_⊕_ cut(P⊕2(y), g) = P⊕2(cut(y, g))
_&_ cut(P&(y, y′), g) = P&(cut(y, g),cut(y′, g))

Figure 2-13: Cut Elimination Procedure for Core Rules (cut2)

Q Γ cut2 :`Q,Γ, N⊥×`Q⊥,Γ⊥,P → ` N⊥OP
> ε cut2(P+

>(P>),P+
⊥(y′)) = PO2(wkN⊥(y′))

> M cut2(P�
> (P−

>(P� y)))(PO⊥ (P+
⊥(PO1(y′)))) = symPO(cut2(y′, y))

> M cut2(P�
> (P−

>(P� y)))(PO⊥ (P+
⊥(PO2(y′)))) = PO2(cut(y′, y))

> M,L,Γ′ cut2(P⊗
>(y),PO⊥ (y′)) = cut2(y, y′)

> M,R,Γ′ cut2(P�
> (y),P®

⊥(y′)) = cut2(y, y′)
> R,Γ′ cut2(P+

>(y),P−
⊥(y)) = cut2(y, y′)

_O_ cut2(PO1(y1),P⊗(y2, y3)) = cut2(y1, y2)
_O_ cut2(PO2(y1),P⊗(y2, y3)) = cut2(y1, y3)
_�_ cut2(P�(y1),P®(y2)) = cut2(y1, y2)
_®_ cut2(P®(y1),P�(y2)) = cut2(y1, y2)
_⊕_ cut2(P⊕1(y1),P&(y2, y3)) = cut2(y1, y2)
_⊕_ cut2(P⊕2(y1),P&(y2, y3)) = cut2(y1, y3)



Call a rule a lift if it is P+
⊥ or P−

>. By inspection, wk0(y) contains precisely the same

number of lifts as y. We can see that each of the recursive calls in cut and cut2 are

to a structurally smaller argument, or an argument with a strictly smaller number of

lifts. Since if p is structurally smaller than q it contains no more lifts, we can see that

cut/cut2 terminates by defining it inductively on the lexicographical ordering 〈l(p), |p|〉
where l(p) is the number of lifts in p and |p| is the size of p.

2.5.2 Soundness

Despite the fact that we are emulating the mechanics of strategy composition in WS,

we can show that the procedure is sound with respect to any WS-category. This proof

is included here for completeness, but is tedious and routine. The reader may wish to

move on to Section 2.5.3.

First, we show that some equations hold in any WS-category, and then go on to prove

soundness of wkP , rem0, cut and cut2.

Proposition 2.5.1 In any WS-category, the following equations hold:

1. pasc( ◦ΛI ( f )=ΛI (Λ f )

2. unit−1
( = pasc( ◦ (lunit⊗ ( id).

3. unit( ◦ (ΛI f ( id)◦ lfe= apps ◦ (id® f )

4. abs= unit® ◦ (id®af)

5. abs◦wk◦ ( f ⊗ g)= f ◦ runit⊗ ◦ (id⊗af).

6. (((af( id)◦unit−1
( )( id)◦ lfe= unit® ◦ (id®af)

7. lfeA,I ◦unit−1
® = (unit(( id)

8. absI = unit®

Proof 1. pasc( ◦ΛI ( f )

=Λ(Λ(app◦assoc))◦ΛI ( f )

=Λ(Λ(app◦assoc)◦ (Λ( f ◦ runit⊗)⊗ id))

=Λ(Λ(app◦assoc◦ ((Λ( f ◦ runit⊗)⊗ id)⊗ id)))

=Λ(Λ(app◦ (Λ( f ◦ runit⊗)⊗ id)◦assoc))
=Λ(Λ( f ◦ runit⊗ ◦assoc))
=Λ(Λ( f ◦ (id⊗ runit⊗)))

=Λ(Λ( f )◦ runit⊗)

=ΛI (Λ f ) as required.



2. pasc( ◦ (lunit⊗ ( id)

=Λ(Λ(app◦assoc))◦ (lunit⊗ ( id)

=Λ(Λ(app◦assoc◦ (((lunit⊗ ( id)⊗ id)⊗ id)))

=Λ(Λ(app◦ ((lunit⊗ ( id)⊗ id)◦assoc))
=Λ(Λ(app◦ (Λ(app◦ (id⊗ lunit⊗))⊗ id)◦assoc))
=Λ(Λ(app◦ (id⊗ lunit⊗)◦assoc))
=Λ(Λ(app◦ (runit⊗⊗ id)))

=Λ(Λ(app)◦ runit⊗)

=Λ(runit⊗)= unit−1
( as required.

3. unit( ◦ (ΛI ( f )( id)◦ lfe
= unit( ◦ (ΛI ( f )( id)◦Λ(apps ◦ (id®app)◦pasc−1 ◦wk)

= unit( ◦Λ(apps ◦ (id®app)◦pasc−1 ◦wk◦ (id⊗ΛI ( f ))

= unit( ◦Λ(apps ◦ (id®app)◦pasc−1 ◦ (id®ΛI ( f ))◦wk)

= unit( ◦Λ(apps ◦ (id®app)◦ (id® (id⊗ΛI ( f )))◦pasc−1 ◦wk)

= unit( ◦Λ(apps ◦ (id® (app◦ (id⊗ΛI ( f ))))◦pasc−1 ◦wk)

= unit( ◦Λ(apps ◦ (id® ( f ◦ runit⊗))◦pasc−1 ◦wk)

= unit( ◦Λ(apps ◦ (id® f )◦ runit⊗)

= unit( ◦Λ(apps ◦ runit⊗ ◦ ((id® f )⊗ id))

= unit( ◦Λ(apps ◦ runit⊗)◦ (id® f )

= unit( ◦Λ(runit⊗ ◦ (apps ⊗ id))◦ (id® f )

= unit( ◦Λ(runit⊗)◦apps ◦ (id® f )

= unit( ◦unit−1
( ◦apps ◦ (id® f )

= apps ◦ (id® f ) as required.

4. abs

= unit( ◦ (Λ(runit⊗ ◦ (id⊗af))( id)◦ lfe◦ (unit−1
( ® id)

= unit(◦(Λ(runit⊗◦(id⊗af))( id)◦Λ(apps◦(id®app)◦(id®sym)◦pasc−1◦wk)◦(unit−1
(®

id)

= unit(◦Λ(apps◦(id®app)◦(id®sym)◦pasc−1◦wk◦(id⊗Λ(runit⊗◦(id⊗af))))◦(unit−1
(®id)

= unit( ◦Λ(apps ◦ (id®app◦sym)◦pasc−1 ◦ (id®Λ(runit⊗ ◦ (id⊗af)))◦wk)◦ (unit−1
(® id)

= unit( ◦Λ(apps ◦ (id®app◦sym◦ (id⊗Λ(runit⊗ ◦ (id⊗af))))◦pasc−1 ◦wk)◦ (unit−1
(® id)

= unit( ◦Λ(apps ◦ (id®app◦ (Λ(runit⊗ ◦ (id⊗af))⊗ id)◦sym)◦pasc−1 ◦wk)◦ (unit−1
(® id)

= unit( ◦Λ(apps ◦ (id® runit⊗ ◦ (id⊗af)◦ sym)◦pasc−1 ◦wk)◦ (unit−1
( ® id)

= unit( ◦Λ(apps ◦ (id® runit⊗ ◦ sym◦ (af⊗ id))◦pasc−1 ◦wk)◦ (unit−1
( ® id)

= unit( ◦Λ(apps ◦ (id® lunit⊗ ◦ (af⊗ id))◦pasc−1 ◦wk)◦ (unit−1
( ® id)

= unit( ◦Λ(apps ◦wk◦ (unit®⊗ id)◦ ((id®af)⊗ id))◦ (unit−1
( ® id)

= unit( ◦Λ(app)◦unit® ◦ (id®af)◦ (unit−1
( ® id)



= unit( ◦unit® ◦ (id®af)◦ (unit−1
( ® id)

= unit( ◦unit® ◦ (unit−1
( ® id)◦ (id®af)

= unit( ◦unit−1
( ◦unit® ◦ (id®af)

= unit® ◦ (id®af) as required.

5. abs◦wk◦( f ⊗g)= unit®◦(id®af)◦wk◦( f ⊗g)= unit®◦wk◦( f ⊗af◦g)= runit⊗◦( f ⊗af)=
f ◦ runit⊗ ◦ (id⊗af).

6. (((af( id)◦unit−1
( )( id)◦ lfe

=Λ(apps ◦ (id®app)◦ (id® sym)◦pasc−1 ◦wk◦ (id⊗ ((af( id)◦unit−1
( )))

=Λ(apps ◦ (id®app)◦ (id® sym)◦pasc−1 ◦ (id® ((af( id)◦unit−1
( ))◦wk)

=Λ(apps ◦ (id®app)◦ (id® sym)◦ (id® (id⊗ ((af( id)◦unit−1
( )))◦pasc−1 ◦wk)

=Λ(apps ◦(id®app)◦(id®(((af( id))⊗ id))◦(id®sym)◦(id®(id⊗unit−1
( ))◦pasc−1◦wk)

=Λ(apps◦(id®app)◦(id®(Λ(app◦(id⊗af))⊗id))◦(id®sym)◦(id®(id⊗unit−1
( ))◦pasc−1◦wk)

=Λ(apps ◦ (id® (app◦ (id⊗af)))◦ (id® sym)◦ (id® (id⊗unit−1
( ))◦pasc−1 ◦wk)

=Λ(apps ◦ (id® (app◦ (id⊗af)◦ sym◦ (id⊗unit−1
( )))◦pasc−1 ◦wk)

=Λ(apps ◦ (id® (app◦ (id⊗af)◦ (unit−1
( ⊗ id)◦ sym))◦pasc−1 ◦wk)

=Λ(apps ◦ (id® (app◦ (unit−1
( ⊗ id)◦ (id⊗af)◦ sym))◦pasc−1 ◦wk)

=Λ(apps ◦ (id® (app◦ (Λ(runit⊗)⊗ id)◦ (id⊗af)◦ sym))◦pasc−1 ◦wk)

=Λ(apps ◦ (id® (runit⊗ ◦ (id⊗af)◦ sym))◦pasc−1 ◦wk)

=Λ(apps ◦ ((unit® ◦ (id®af))® id)◦wk)

=Λ(apps ◦wk◦ ((unit® ◦ (id®af))⊗ id))

=Λ(apps ◦wk)◦unit® ◦ (id®af)

=Λ(app)◦unit® ◦ (id®af)

= unit® ◦ (id®af) as required.

7. lfeA,I◦unit−1
® = (unit(( id). We show that (unit−1

( ( id)◦lfe= unit®. Well (unit−1
( (

id)◦ lfe
= (unit−1

( ( id)◦Λ(apps ◦ (id®app)◦ (id® sym)◦pasc−1 ◦wk)

=Λ(apps ◦ (id®app)◦ (id® sym)◦pasc−1 ◦wk◦ (id⊗unit−1
( ))

=Λ(apps ◦ (id®app)◦ (id® sym)◦pasc−1 ◦ (id®unit−1
( )◦wk)

=Λ(apps ◦ (id®app)◦ (id® sym)◦ (id® (id⊗unit−1
( ))◦pasc−1 ◦wk)

=Λ(apps ◦ (id®app)◦ (id® (unit−1
( ⊗ id))◦ (id® sym)◦pasc−1 ◦wk)

=Λ(apps ◦ (id®app◦ (Λ(runit⊗)⊗ id))◦ (id® sym)◦pasc−1 ◦wk)

=Λ(apps ◦ (id® runit⊗)◦ (id® sym)◦pasc−1 ◦wk)

=Λ(apps ◦ (unit®® id)◦wk)

=Λ(apps ◦wk◦ (unit®⊗ id))

=Λ(apps ◦wk)◦unit®
=Λs(apps)◦unit®



=Λs(Λ−1
s (id))◦unit®

= id◦unit®
= unit® as required.

8. absI = unit®. Well absI = unit(◦(dist0(
−1 ( id)◦lfeI,I◦(unit−1

(®id)= unit(◦(dist0(
−1 (

id)◦(unit(( id)◦unit®◦(unit−1
(® id)= unit(◦(dist0(

−1 ( id)◦(unit(( id)◦unit−1
( ◦

unit® = unit(◦(unit(◦dist0(−1 ( id)◦unit−1
(◦unit® = unit(◦id◦unit−1

(◦unit® = unit®
using the fact that (dist0()I = unit( since both sides are maps into the terminal ob-

ject.

Proposition 2.5.2 If p is a proof of ` A,Γ then in any WS-category Jrem0(p)K= unit( ◦
JpK if A is negative and JpK◦unit−1

® if A is positive.

Proof Induction on p. First, we consider the cases where A is negative:

• If p = P1 then Jrem0(p)K = JP1K = unit( ◦ JP1K as the codomain is the terminal

object.

• If p =P−
⊥(p′) then Jrem0(p)K= JP−

⊥(rem0(p′))K= JΓK−(abs−1)◦Jrem0(p′)K= JΓK−(abs−1)◦
unit(◦JpK= unit(◦JΓ,0K−(abs−1)◦Jp′K= unit(◦JpK. The second case of p =PO⊥ (p′)
and the case of P®

⊥(p′) are similar, replacing abs−1 for the appropriate morphism.

• For the first case of PO⊥ (p′), when Γ = ⊥,P we have Jrem0(PO⊥ (P+
⊥(PO1(p))))K =

JP+
⊥(rem0(p))K = ΛI (JpK ◦ unit−1

® ). We need to show that this is equal to unit( ◦
JPO⊥ (P+

⊥(PO1(p)))K= unit(◦pasc(◦(sym( id)◦ΛI (JpK◦wk)= unit(◦pasc(◦(sym(

id)◦ (wk( id)◦ΛI (JpK)= (unit−1
® ( id)◦ΛI (JpK)=ΛI (JpK◦unit−1

® ) as required.

• If p =P&(p1, p2) then Jrem0(p)K= JP&(rem0(p1),rem0(p2))K=
dist−1

−,Γ◦〈Jrem0(p1)K,Jrem0(p2)K〉 = dist−1
−,Γ◦〈unit(◦Jp1K,unit(◦Jp2K〉 = dist−1

−,Γ◦(unit(×
unit() ◦ 〈Jp1K,Jp2K〉 = dist−1

−,Γ ◦unit( ◦dist−1
( ◦ 〈Jp1K,Jp2K〉 = unit( ◦ (id( dist−1

−,Γ) ◦
dist−1

(◦〈Jp1K,Jp2K〉 = unit(◦dist−1
−,Γ,0◦〈Jp1K,Jp2K〉 = unit(◦JP&(p1, p2)K as required.

• The case of p =P⊗(p1, p2) is similar. If p =P⊗(p1, p2) then Jrem0(p)K=
JP⊗(rem0(p1),rem0(p2))K= JΓK−(dec)◦dist−1

−,Γ ◦〈Jrem0(p1)K,Jrem0(p2)K〉 = JΓK−(dec)◦
dist−1

−,Γ◦〈unit(◦Jp1K,unit(◦Jp2K〉 = JΓK−(dec)◦dist−1
−,Γ◦(unit(×unit()◦〈Jp1K,Jp2K〉 =

JΓK−(dec) ◦ dist−1
−,Γ ◦ unit( ◦ dist−1

( ◦ 〈Jp1K,Jp2K〉 = JΓK−(dec) ◦ unit( ◦ (id ( dist−1
−,Γ) ◦

dist−1
( ◦ 〈Jp1K,Jp2K〉 = unit( ◦ (id( JΓK−(dec))◦ (id( dist−1

−,Γ)◦dist−1
( ◦ 〈Jp1K,Jp2K〉 =

unit( ◦ JΓ,0K−(dec)◦dist−1
−,Γ,0 ◦〈Jp1K,Jp2K〉 = unit( ◦ JP⊗(p1, p2)K as required.

• If A is negative and p = P®(p′) then Jrem0(p)K = JP®(rem0(p′))K = Jrem0(p′)K =
unit( ◦ Jp′K= unit( ◦ JP®(p′)K= unit( ◦ JpK. The case for P�(p) is similar.



We next consider the cases where A is positive:

• In the case of p = P+
>(P>), then Jrem0(p)K = JP>K = id⊥ = abs ◦unit−1

® = JP+
>(P>)K ◦

unit−1
® using absI = unit® from Proposition 2.5.1.

• In the second case of p = P+
>(p′) then Jrem0(P+

>(p′))K = Jrem0(p′)K ◦ JΓ,PK+(abs) =
Jp′K◦unit−1

® ◦(JΓK+(abs)®id)= Jp′K◦JΓ,0K+(abs)◦unit−1
® = JP+

>(p′)K◦unit−1
® as required.

The second case for cases for P�
> and the case of P⊗

> are similar, replacing abs by

the appropriate morphism.

• In the case of p = P�
> (P−

>(P�(p′))) we have Jrem0(p)K = JP−
>(rem0(p))K = unit( ◦

(Jrem0(p′)K( id) = unit( ◦ (unit( ◦ Jp′K( id) = unit( ◦ (Jp′K( id)◦ (unit( ( id) =
unit(◦(Jp′K( id)◦lfe◦unit−1

® = JpK◦unit−1
® using the fact that lfe◦unit−1

® = (unit((

id) from Proposition 2.5.1.

• If p =P⊕ i(p′) then Jrem0(p)K= JP⊕ i(rem0(p′))K= Jrem0(p′)K◦JΓK+(πi)= Jp′K◦unit−1
® ◦

JΓK+(πi)= Jp′K◦ JΓ,0K+(πi)◦unit−1
® = JpK◦unit−1

® as required.

• The case for p =PO i(p′) is simpler, replacing π1 for wk and π2 for wk◦ sym.

• If A is positive and p =P�(p′) then Jrem0(p)K= JP�(rem0(p′))K= Jrem0(p′)K= Jp′K◦
unit−1

® = JpK◦unit−1
® as required. The case for P®(p′) is similar.

Proposition 2.5.3 JunPO0(p)K= JpK◦ lunit−1
⊗

Proof We show that JunPO0K ◦ lunit⊗ = JpK. We must have p = PO2(p′) and the LHS

is JunPO0(PO2(p′))K ◦ lunit⊗ = Jrem0(p′)K ◦ lunit⊗ = Jp′K ◦unit−1
® ◦ lunit⊗ = Jp′K ◦wk ◦ sym =

JPO2(p′)K as required.

Proposition 2.5.4 If p is a proof of ` A,Γ then in any WS-category JwkP (p)K= JP+
wk(p)K.

(This is (af( id)◦unit−1
( ◦ JpK if A is negative and JpK◦unit® ◦ (id®af) if A is positive.)

Proof Induction on p. We first consider the cases where A is negative:

• If p = P1 then JwkP (p)K = JP1K = (af ( id) ◦ unit−1
( ◦ JP1K as the codomain is the

terminal object.

• If p = P−
⊥(p′) then JwkP (p)K = JP−

⊥(wkP (p′))K = JΓ,PK−(abs−1) ◦ JwkP (p′)K = (id (

JΓK−(abs−1)) ◦ JwkP (p′)K = (id ( JΓK−(abs−1)) ◦ (af ( id) ◦ unit−1
( ◦ Jp′K = (af ( id) ◦

(id( JΓK−(abs−1))◦unit−1
( ◦ Jp′K = (af ( id)◦unit−1

( ◦ JΓK−(abs−1)◦ Jp′K = (af ( id)◦
unit−1

( ◦JP−
⊥(p′)K as required. The case of p =PO⊥ (p′) and P®

⊥(p′) are similar, replac-

ing abs−1 by the appropriate morphism.



• If p =P+
⊥(p′) then JwkP (p)K= JPO⊥ (P+

⊥(PO1(wkP (p′))))K= pasc(◦(sym( id)◦ΛI (Jp′K◦
unit® ◦ (id®af)◦wk) = pasc( ◦ ((unit® ◦ (id®af)◦wk◦ sym) ( id)◦ΛI (Jp′K) = pasc( ◦
((unit® ◦wk ◦ sym ◦ (af ⊗ id) ( id) ◦ΛI (Jp′K) = pasc( ◦ (af ⊗ id ( id) ◦ (lunit⊗ ( id) ◦
ΛI (Jp′K) = (af ( id)◦pasc( ◦ (lunit⊗ ( id)◦ΛI (Jp′K) = (af ( id)◦unit−1

( ◦ΛI (Jp′K) =
(af( id)◦unit−1

( ◦ JpK as required.

• If p =P&(p1, p2) then JwkP (p)K= JP&(wkP (p1),wkP (p2))K=
dist−1

−,Γ,P◦〈JwkP (p1)K,JwkP (p2)K〉 = dist−1
−,Γ,P◦〈(af( id)◦unit−1

(◦Jp1K, (af( id)◦unit−1
(◦

Jp2K〉 = dist−1
−,Γ,P◦(((af( id)◦unit−1

( )×((af( id)◦unit−1
( ))◦〈Jp1K,Jp2K〉 = (id( dist−1

−,Γ)◦
dist−1

( ◦ (((af( id)◦unit−1
( )× ((af( id)◦unit−1

( ))◦〈Jp1K,Jp2K〉 = (id( dist−1
−,Γ)◦ ((af(

id) ◦ unit−1
( ) ◦ 〈Jp1K,Jp2K〉 = (af ( id) ◦ (id ( dist−1

−,Γ) ◦ unit−1
( ◦ 〈Jp1K,Jp2K〉 = (af (

id)◦unit−1
( ◦dist−1

−,Γ ◦〈Jp1K,Jp2K〉 = (af( id)◦unit−1
( ◦ JpK as required.

• The case of p =P⊗(p1, p2) is similar. If p =P⊗(p1, p2) then JwkP (p)K=
JP⊗(wkP (p1),wkP (p2))K= JΓ,PK−(dec)◦dist−1

−,Γ,P ◦〈JwkP (p1)K,JwkP (p2)K〉 =
JΓ,PK−(dec)◦dist−1

−,Γ,P◦〈(af( id)◦unit−1
(◦Jp1K, (af( id)◦unit−1

(◦Jp2K〉 = JΓ,PK−(dec)◦
dist−1

−,Γ,P ◦ (((af( id)◦unit−1
( )× ((af( id)◦unit−1

( ))◦〈Jp1K,Jp2K〉 = JΓ,PK−(dec)◦ (id(

dist−1
−,Γ)◦dist−1

( ◦(((af( id)◦unit−1
( )×((af( id)◦unit−1

( ))◦〈Jp1K,Jp2K〉 = JΓ,PK−(dec)◦
(id( dist−1

−,Γ)◦((af( id)◦unit−1
( )◦〈Jp1K,Jp2K〉 = JΓ,PK−(dec)◦(af( id)◦(id( dist−1

−,Γ)◦
unit−1

( ◦ 〈Jp1K,Jp2K〉 = JΓ,PK−(dec) ◦ (af ( id) ◦ unit−1
( ◦ dist−1

−,Γ ◦ 〈Jp1K,Jp2K〉 = (id (

JΓK−(dec)) ◦ (af ( id) ◦ unit−1
( ◦ dist−1

−,Γ ◦ 〈Jp1K,Jp2K〉 = (af ( id) ◦ (id ( JΓK−(dec)) ◦
unit−1

( ◦dist−1
−,Γ ◦ 〈Jp1K,Jp2K〉 = (af ( id) ◦unit−1

( ◦ ◦JΓK−(dec) ◦dist−1
−,Γ ◦ 〈Jp1K,Jp2K〉 =

(af( id)◦unit−1
( ◦ JpK as required.

• If A is negative and p =P®(p′) then JwkP (p)K= JP®(wkP (p′))K= JwkP (p′)K= (af (

id)◦unit−1
( ◦ Jp′K= (af ( id)◦unit−1

( ◦ JP®(p′)K= (af ( id)◦unit−1
( ◦ JpK. The case for

P�(p) is similar.

We next consider the cases where A is positive:

• If p = P> then JwkP (P>)K = JP+
>(P>)K = abs = unit® ◦ (id® af) by Proposition 2.5.1.

This is JP>K◦unit® ◦ (id®af) as required.

• If p = P+
>(p′) then JwkP (P+

>(p′))K = JwkP (p′)K ◦ JΓ,PK+(abs) = Jp′K ◦unit® ◦ (id®af) ◦
(JΓK+(abs)®id)= Jp′K◦JΓK+(abs)◦unit®◦(id®af)= JP+

>(p′)K◦unit®◦(id®af) as required.

The cases for P⊗
> and P�

> are similar, replacing abs by the appropriate morphism.

• If p = P−
>(p′) then JwkP (p)K = JP�

> (P−
>(P�(wkP (p′))))K = unit( ◦ ((af ( id) ◦unit−1

( ◦
Jp′K)( id)◦ lfe= unit( ◦ (Jp′K( id)◦ (((af( id)◦unit−1

( )( id)◦ lfe= unit( ◦ (Jp′K(
id)◦unit® ◦ (id®af) by Proposition 2.5.1. This is JpK◦unit® ◦ (id®af) as required.



• If p =P⊕ i(p′) then JwkP (p)K= JP⊕ i(wkP (p′))K= JwkP (p′)K◦JΓ,PK+(πi)= Jp′K◦unit®◦
(id® af) ◦ (JΓK+(πi)® id) = Jp′K ◦ JΓK+(πi) ◦ unit® ◦ (id® af) = JpK ◦ unit® ◦ (id® af) as

required.

• The case for p =PO i(p′) is simpler, replacing π1 for wk and π2 for wk◦ sym.

• If A is positive and p = P�(p′) then JwkP (p)K = JP�(wkP (p′))K = JwkP (p′)K = Jp′K◦
unit®◦(id®af)= JpK◦unit®◦(id®af) as required. The case for P®(p′) is similar.

We can now show the main result of this section, i.e. that Jcut(p1, p2)K= JPcut(p1, p2)K.

Proposition 2.5.5 In any WS-category, if p1 is a proof of ` A,Γ, N⊥ and p2 is a proof of

` N,R then Jcut(p1, p2)K= JPcut(p1, p2)K. That is,

• Jcut(p1, p2)K=ΛI (Λ−1
I (Jp1K)◦Λ−1

I (Jp2K)) if A is negative.

• Jcut(p1, p2)K= Jp1K◦ (id®Λ−1
I Jp2K) if A is positive.

• Jcut2(p1, p2)K= Jp1K◦wk◦ sym◦ (id⊗Λ−1
I Jp2K).

Proof We show these three facts by simultaneous induction, following the cases defined

in the definition of cut and cut2.

We first show that Jcut(p1, p2)K=ΛI (Λ−1
I (Jp1K)◦Λ−1

I (Jp2K)) if A is negative.

• If A = 1 then the hom-set in question is singleton, since the codomain is isomor-

phic to the terminal object, hence any two elements of this hom set are equal, in

particular Jcut(P1, p2)K=ΛI (Λ−1
I (JP1K)◦Λ−1

I (Jp2K)).

• If A =⊥ and Γ= ε then Jcut(P+
⊥(p),h)K

= JP+
⊥(unPO0(cut2(wk0(p),h)))K

=ΛI (Jcut2(wk0(p),h)K◦ lunit−1
⊗ ) by Proposition 2.5.3

=ΛI (Jwk0(p)K◦wk◦ sym◦ (id⊗Λ−1
I (JhK)◦ lunit−1

⊗ ) by Proposition 2.5.4

=ΛI (JpK◦unit® ◦ (id®af0)◦wk◦ sym◦ (id⊗Λ−1
I (JhK)◦ lunit−1

⊗ )

=ΛI (JpK◦unit® ◦ id◦wk◦ sym◦ lunit−1
⊗ ◦Λ−1

I (JhK))
=ΛI (JpK◦Λ−1

I (JhK))
=ΛI (Λ−1

I (ΛI (JpK))◦Λ−1
I (JhK))

=ΛI (Λ−1
I (JP+

⊥(p)K)◦Λ−1
I (JhK)) as required.

• If A =⊥ and Γ= P,Q,Γ′ then Jcut(PO⊥ (p),h)K
= JPO⊥ (cut(p,h))K
= JΓ,RK−(pasc−1

( ◦ (sym( id))◦ Jcut(p,h)K



= JΓ,RK−(pasc−1
( ◦ (sym( id))◦ΛI (Λ−1

I JpK◦Λ−1
I JhK)

= (id( JΓK−(pasc−1
( ◦ (sym( id)))◦ΛI (Λ−1

I JpK◦Λ−1
I JhK)

=ΛI (JΓK−(pasc−1
( ◦ (sym( id))◦Λ−1

I JpK◦Λ−1
I JhK)

=ΛI (Λ−1
I ((id( JΓK−(pasc−1

( ◦ (sym( id)))◦ JpK)◦Λ−1
I JhK)

=ΛI (Λ−1
I (JΓ, N⊥K−(pasc−1

( ◦ (sym( id))◦ JpK)◦Λ−1
I JhK)

=ΛI (Λ−1
I JPO⊥ (p)K◦Λ−1

I JhK) as required.

• If A = ⊥ and Γ = P, M,Γ′ then the proof is entirely similar, replacing lfe−1 for

pasc−1
( ◦ (sym( id).

• If A = ⊥ and Γ = M,Γ then the proof is entirely similar, replacing lfe−1 for the

isomorphism abs.

• If A =⊥ and Γ= P then Jcut(PO⊥ (P+
⊥(PO1(y))), g)K

= JPO⊥ (P+
⊥(PO1(cut(y, g))))K

= pasc−1
( ◦ (sym( id)◦ΛI (JyK◦ (id®Λ−1

I JgK)◦wk)

= pasc−1
( ◦ΛI (JyK◦ (id®Λ−1

I JgK)◦wk◦ sym)

=ΛI (Λ(JyK◦ (id®Λ−1
I JgK)◦wk◦ sym)) using Proposition 2.5.1

=ΛIΛ(JyK◦wk◦ sym◦ (Λ−1
I JgK⊗ id))

=ΛI (Λ(JyK◦wk◦ sym)◦Λ−1
I JgK)

=ΛI (Λ−1
I ΛIΛ(JyK◦wk◦ sym)◦Λ−1

I JgK)
=ΛI (Λ−1

I (pasc−1
( ◦ΛI (JyK◦wk◦ sym))◦Λ−1

I JgK) using Proposition 2.5.1

=ΛI (Λ−1
I (pasc−1

( ◦ (sym( id)◦ΛI (JyK◦wk))◦Λ−1
I JgK)

=ΛI (Λ−1
I JPO⊥ (P+

⊥(PO1(y)))K◦Λ−1
I JgK) as required.

Similarly, Jcut(PO⊥ (P+
⊥(PO2(y))), g)K

= JPO⊥ (P+
⊥(cut2(y, g)))K

= pasc−1
( ◦ (sym( id)◦ΛI (JyK◦wk◦ sym◦ (id⊗Λ−1

I JgK))
= pasc−1

( ◦ (sym( id)◦ΛI (JyK◦wk◦ (Λ−1
I JgK⊗ id)◦ sym)

= pasc−1
( ◦ΛI (JyK◦wk◦ (Λ−1

I JgK⊗ id)◦ sym◦ sym)

= pasc−1
( ◦ΛI (JyK◦wk◦ (Λ−1

I JgK⊗ id))

=ΛIΛ(JyK◦wk◦ (Λ−1
I JgK⊗ id)) using Proposition 2.5.1

=ΛI (Λ(JyK◦wk)◦Λ−1
I (JgK))

=ΛI (Λ−1
I ΛIΛ(JyK◦wk)◦Λ−1

I (JgK))
=ΛI (Λ−1

I (pasc−1
( ◦ΛI (JyK◦wk)◦Λ−1

I (JgK)) using Proposition 2.5.1

=ΛI (Λ−1
I (pasc−1

( ◦ΛI (JyK◦wk◦ sym◦ sym)◦Λ−1
I (JgK))

=ΛI (Λ−1
I (pasc−1

( ◦ (sym( id)◦ΛI (JyK◦wk◦ sym)◦Λ−1
I (JgK))

=ΛI (Λ−1
I (JPO⊥ (P+

⊥(PO2(y)))K)◦Λ−1
I (JgK)) as required.

• If A = M&N then Jcut(P&(pa, pb), g)K= JP&(cut(pa, g),cut(pb, g))K



= dist−1
−,Γ,R ◦〈Jcut(pa, g)K,Jcut(pb, g)K〉

= dist−1
−,Γ,R ◦〈ΛI (Λ−1

I JpaK◦Λ−1
I JgK),ΛI (Λ−1

I JpbK◦Λ−1
I JgK)〉

= dist−1
−,Γ,R ◦〈id(π1, id(π2〉◦ΛI〈Λ−1

I JpaK◦Λ−1
I JgK,Λ−1

I JpbK◦Λ−1
I JgK〉

= dist−1
−,Γ,R ◦〈id(π1, id(π2〉◦ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉◦Λ−1

I JgK
= dist−1

−,Γ,R ◦〈id(π1, id(π2〉◦ (id( 〈Λ−1
I JpaK,Λ−1

I JpbK〉)◦ΛIΛ
−1
I JgK

= dist−1
−,Γ,R ◦〈id(π1, id(π2〉◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( dist−1
−,Γ)◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( dist−1
−,Γ)◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( dist−1
−,Γ)◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ΛIΛ

−1
I JgK

=ΛI (dist−1
−,Γ ◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (dist−1

−,Γ ◦Λ−1
I ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I ((id( dist−1
−,Γ)◦ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I (dist−1
−,Γ,N ◦〈id(π1, id(π2〉◦ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I (dist−1
−,Γ,N ◦〈ΛIΛ

−1
I JpaK,ΛIΛ

−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I (dist−1
−,Γ,N ◦〈JpaK,JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I JP&(pa, pb)K◦Λ−1
I JgK) as required.

• If A = M®N then Jcut(P®(p), g)K= JP®(cut(p, g))K= Jcut(p, g)K=ΛI (Λ−1
I JpK◦Λ−1

I JgK)=
ΛI (Λ−1

I JP®(p)K◦Λ−1
I JgK) as required.

• If A = M�P then Jcut(P�(p), g)K= JP�(cut(p, g))K= Jcut(p, g)K=ΛI (Λ−1
I JpK◦Λ−1

I JgK)=
ΛI (Λ−1

I JP�(p)K◦Λ−1
I JgK) as required.

• If A = M⊗N then Jcut(P⊗(pa, pb), g)K= JP⊗(cut(pa, g),cut(pb, g))K
= JΓ,RK−(dec−1)◦dist−1

−,Γ,R ◦〈Jcut(pa, g),cut(pb, g)〉
= JΓ,RK−(dec−1)◦dist−1

−,Γ,R ◦〈ΛI (Λ−1
I JpaK◦Λ−1

I JgK),ΛI (Λ−1
I JpbK◦Λ−1

I JgK)〉
= JΓ,RK−(dec−1)◦dist−1

−,Γ,R◦〈id(π1, id(π2〉◦ΛI〈Λ−1
I JpaK◦Λ−1

I JgK,Λ−1
I JpbK◦Λ−1

I JgK〉
= JΓ,RK−(dec−1)◦dist−1

−,Γ,R ◦〈id(π1, id(π2〉◦ΛI〈Λ−1
I JpaK,Λ−1

I JpbK〉◦Λ−1
I JgK

= JΓ,RK−(dec−1)◦dist−1
−,Γ,R◦〈id(π1, id(π2〉◦(id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ΛIΛ

−1
I JgK

= JΓ,RK−(dec−1)◦dist−1
−,Γ,R ◦〈id(π1, id(π2〉◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= JΓ,RK−(dec−1)◦ (id( dist−1
−,Γ)◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( JΓK−(dec−1))◦ (id( dist−1
−,Γ)◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( JΓK−(dec−1)◦dist−1
−,Γ)◦ (id( 〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( JΓK−(dec−1)◦dist−1
−,Γ ◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ JgK

= (id( JΓK−(dec−1)◦dist−1
−,Γ ◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦ΛIΛ

−1
I JgK

=ΛI (JΓK−(dec−1)◦dist−1
−,Γ ◦〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (JΓK−(dec−1)◦dist−1

−,Γ ◦Λ−1
I ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I ((id( JΓK−(dec−1)◦dist−1
−,Γ)◦ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)
=Λ(Λ−1

I (JΓ, NK−(dec−1)◦dist−1
−,Γ,N◦〈id(π1, id(π2〉◦ΛI〈Λ−1

I JpaK,Λ−1
I JpbK〉)◦Λ−1

I JgK)



=ΛI (Λ−1
I (JΓ, NK−(dec−1)◦dist−1

−,Γ,N ◦〈ΛIΛ
−1
I JpaK,ΛIΛ

−1
I JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I (JΓ, NK−(dec−1)◦dist−1
−,Γ,N ◦〈JpaK,JpbK〉)◦Λ−1

I JgK)
=ΛI (Λ−1

I JP⊗(pa, pb)K◦Λ−1
I JgK) as required.

We next show that Jcut(p1, p2)K= Jp1K◦ (idΓ®Λ−1
I Jp2K) if A is positive.

• If A = P ⊕Q then Jcut(P⊕1(y), g)K= JP⊕1(cut(y, g))K= Jcut(y, g)K◦JΓ,RK+(π1)= JyK◦
(id®Λ−1

I JgK) ◦ (JΓK+(π1)® id) = JyK ◦ (JΓK+(π1)®Λ−1
I JgK) = JyK ◦ (JΓK+(π1)® id) ◦ (id®

Λ−1
I JgK)= JyK◦JΓ, N⊥K+(π1)◦(id®Λ−1

I JgK)= JP®1(y)K◦(id®Λ−1
I JgK) as required. Case

for Jcut(P⊕2(y), g)K is similar.

• If A = P ® M then Jcut(P®(y), g)K = JP® (cut(y, g))K = Jcut(y, g)K = JyK ◦ (id® JgK) =
JP®(y)K◦ (id® JgK). If A = P�Q similar reasoning applies.

• If A = POQ then Jcut(PO1(y), g)K= JPO1(cut(y, g))K= Jcut(y, g)K◦JΓ,∆K+(wk)= JyK◦
(id®Λ−1

I JgK)◦ (JΓK+(wk)® id)= JyK◦ (JΓK+(wk)®Λ−1
I JgK)= JyK◦ (JΓK+(wk)® id)◦ (id®

Λ−1
I JgK) = JyK ◦ JΓ, N⊥K+(wk) ◦ (id®Λ−1

I JgK) = JPO1(y)K ◦ (id®Λ−1
I JgK) as required.

Case for Jcut(PO2(y), g)K is similar.

• If A => and Γ= N,L,Γ′ then Jcut(P⊗
>(y), g)K= JP⊗

⊥(cut(pa, p2))K=
Jcut(y, g)K◦JΓ,∆K+((sym( id)◦pasc()= JyK◦(id®Λ−1

I JgK)◦(JΓK+((sym( id)◦pasc()®
id) = JyK ◦ (JΓK+((sym ( id) ◦ pasc()®Λ−1

I JgK) = JyK ◦ (JΓK+((sym ( id) ◦ pasc()®
id)◦ (id®Λ−1

I JgK)= JyK◦JΓ, N⊥K+((sym( id)◦pasc()◦ (id®Λ−1
I JgK)= JP⊗

⊥(y)K◦ (id®
Λ−1

I JgK) as required. Cases for Γ = N,P,Γ′ and Γ = P,Γ′ are similar, replacing

(sym( id)◦pasc( with the appropriate morphism.

• If A = > and Γ = N then Jcut(P�
> (P−

>(P�(y))), g)K = unit( ◦ (Jcut(y, g)K( id) ◦ lfe =
unit(◦(ΛI (Λ−1

I JyK◦Λ−1
I JgK)( id)◦lfe= apps◦(id®Λ−1

I y◦Λ−1
I g) by Proposition 2.5.1.

This is apps◦(id®Λ−1
I y)◦(id®Λ−1

I g)= unit(◦(ΛIΛ
−1
I JyK( id)◦lfe◦(id®Λ−1

I g) again

by Proposition 2.5.1. This is unit( ◦ (JyK( id)◦ lfe◦ (id®Λ−1
I g)= JP�

> (P−
>(P�(y)))K◦

(id®Λ−1
I (JgK)) as required.

• If A = > and Γ = ε then Jcut(P+
>(P>), g)K = JP+

>(P>)K = id⊥ ◦ abs = abs = abs ◦ (id®
Λ−1

I (JgK))= JP+
>(P>)K◦ (id®Λ−1

I (JgK)) as required.

Finally we show that cut2 is sound, i.e. Jcut2(p1, p2)K= Jp1K◦wk◦ sym◦ (id⊗Λ−1
I Jp2K).

• If Q =Q1 ⊕Q2 then Jcut2(P⊕1(y),P&(a,b))K
= Jcut2(y,a)K
= JyK◦wk◦ sym◦ (id⊗Λ−1

I JaK)
= JyK◦wk◦ sym◦ (id⊗π1 ◦〈Λ−1

I JaK,Λ−1
I JbK〉)



= JyK◦wk◦ sym◦ (id⊗ JΓK+(π1)◦dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK〉)
= JyK◦wk◦ sym◦ (id⊗ JΓK+(π1))◦ (id⊗dist+,Γ ◦〈Λ−1

I JaK,Λ−1
I JbK〉)

= JyK◦ (JΓK+(π1)® id)◦wk◦ sym◦ (id⊗dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK〉)
= JyK◦ JΓ, N⊥K+(π1)◦wk◦ sym◦ (id⊗ (dist+,Γ ◦〈Λ−1

I JaK,Λ−1
I JbK〉))

= JyK◦ JΓ, N⊥K+(π1)◦wk◦ sym◦ (id⊗Λ−1
I ΛI (dist+,Γ ◦〈Λ−1

I JaK,Λ−1
I JbK〉))

= JyK◦ JΓ, N⊥K+(π1)◦wk◦ sym◦ (id⊗Λ−1
I ((id( dist+,Γ)◦ΛI〈Λ−1

I JaK,Λ−1
I JbK〉))

= JyK◦JΓ, N⊥K+(π1)◦wk◦sym◦(id⊗Λ−1
I (dist−,Γ⊥,P◦〈id(π1, id(π2〉◦ΛI〈Λ−1

I JaK,Λ−1
I JbK〉))

= JyK◦ JΓ, N⊥K+(π1)◦wk◦ sym◦ (id⊗Λ−1
I (dist−,Γ⊥,P ◦〈ΛIΛ

−1
I JaK,ΛIΛ

−1
I JbK〉))

= JyK◦ JΓ, N⊥K+(π1)◦wk◦ sym◦ (id⊗Λ−1
I (dist−,Γ⊥,P ◦〈JaK,JbK〉))

= JP⊕1 yK◦wk◦ sym◦ (id⊗Λ−1
I JP&(a,b)K) as required. The case for P⊕2 is similar.

• If Q =Q′®L then Jcut2(P®(y),P�(g))K= Jcut2(y, g)K= JyK◦wk◦sym◦ (id⊗Λ−1
I JgK)=

JP®(y)K◦wk◦ sym◦ (id⊗Λ−1
I JP�(g)K) as required.

• The case for Q′�P ′ is similar.

• If Q =Q1OQ2 then Jcut2(PO1(y),P⊗(a,b))K
= Jcut2(y,a)K
= JyK◦wk◦ sym◦ (id⊗Λ−1

I JaK)
= JyK◦wk◦ sym◦ (id⊗π1 ◦〈Λ−1

I JaK,Λ−1
I JbK〉)

= JyK◦wk◦ sym◦ (id⊗ JΓK+(π1)◦dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK)
= JyK◦wk◦ sym◦ (id⊗ JΓK+(wk◦dec−1)◦dist+,Γ ◦〈Λ−1

I JaK,Λ−1
I JbK〉)

= JyK◦wk◦ sym◦ (id⊗ JΓK+(wk)◦ JΓK+(dec−1)◦dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK〉)
= JyK◦ (JΓK+(wk)® id)◦wk◦ sym◦ (id⊗ JΓK+(dec−1)◦dist+,Γ ◦〈Λ−1

I JaK,Λ−1
I JbK〉)

= JyK◦ JΓ, N⊥K+(wk)◦wk◦ sym◦ (id⊗ JΓK+(dec−1)◦dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK〉)
= JyK◦ JΓ, N⊥K+(wk)◦wk ◦ sym(id⊗Λ−1

I ΛI (JΓK+(dec−1)◦dist+,Γ ◦〈Λ−1
I JaK,Λ−1

I JbK〉))
= JyK◦JΓ, N⊥K+(wk)◦wk◦sym◦(id⊗Λ−1

I ((id( JΓK+(dec−1))◦ΛI (dist+,Γ◦〈Λ−1
I JaK,Λ−1

I JbK〉)))
= JyK◦JΓ, N⊥K+(wk)◦wk◦sym◦(id⊗Λ−1

I (JΓ,P⊥K+(dec−1)◦(id( dist+,Γ)◦ΛI〈Λ−1
I JaK,Λ−1

I JbK〉))
= JyK◦ JΓ, N⊥K+(wk)◦wk◦ sym◦ (id⊗Λ−1

I (JΓ⊥,PK−(dec−1)◦dist+,Γ,P⊥ ◦ 〈id(π1, id(

π2〉◦ΛI〈Λ−1
I JaK,Λ−1

I JbK〉))
= JyK◦JΓ, N⊥K+(wk)◦wk◦sym◦(id⊗Λ−1

I (JΓ⊥,PK−(dec−1)◦dist−,Γ⊥,P◦〈ΛIΛ
−1
I JaK,ΛIΛ

−1
I JbK〉))

= JyK◦ JΓ, N⊥K+(wk)◦wk◦ sym◦ (id⊗Λ−1
I (JΓ⊥,PK−(dec−1)◦dist−,Γ⊥,P ◦〈JaK,JbK〉))

= JPO1 yK◦wk◦ sym◦ (id⊗Λ−1
I JP⊗(a,b)K) as required. The case for PO2 is similar.

• If Γ= L,P,Γ′ and Q => then Jcut2(P�
> (y),P®

⊥(g))K
= Jcut(y, g)K= JyK◦wk◦ sym◦ (id⊗Λ−1

I JgK)
= JyK◦wk◦ sym◦ (id⊗ JΓ′K+(lfe)◦ JΓ′K+(lfe−1)◦Λ−1

I JgK))
= JyK◦wk◦ sym◦ (id⊗ JΓ′K+(lfe)◦Λ−1

I ((id( JΓ′K+(lfe−1))◦ JgK))
= JyK◦wk◦ sym◦ (id⊗ JΓ′K+(lfe)◦Λ−1

I (JΓ′,P⊥K+(lfe−1)◦ JgK))



= JyK◦ JΓ′, N⊥K+(lfe)◦wk◦ sym◦ (id⊗Λ−1
I (JΓ′⊥,PK−(lfe−1)◦ JgK))

= JP�
> yK◦wk◦ sym◦ (id⊗Λ−1

I JP®
⊥gK) as required.

• The cases for Γ = L, N,Γ′ and Γ = R,Γ′ are similar replacing lfe and lfe−1 by the

appropriate isomorphism.

• If A = > and Γ = ε then we have Jcut2(P+
>(P>),P+

⊥(y))K = JPO2(wkN⊥(y))K = JyK ◦
unit−1

® ◦(id®af)◦wk◦sym= JyK◦unit−1
® ◦wk◦(id⊗af)◦sym= JyK◦runit−1

⊗ ◦(id⊗af)◦sym=
abs◦wk◦ (JyK⊗ id)◦ sym using Proposition 2.5.1. This is abs◦wk◦ sym◦ (id⊗ JyK) =
JP+

>(P>)K◦wk◦ sym◦ (id⊗Λ−1
I (JP+

⊥(y)K)) as required.

• If A => and Γ=Q then we have Jcut2(P�
> (P−

>(P� y)),PO⊥ (P+
⊥(PO1 g)))K

= JsymPO(cut2(g, y))K
= JgK◦wk◦ sym◦ (id⊗Λ−1

I JyK)◦ sym
= app◦ (Λ(JgK◦wk◦ sym)⊗ id)◦ (id⊗Λ−1

I JyK)◦ sym
= apps ◦wk◦ (Λ(JgK◦wk◦ sym)⊗Λ−1

I JyK)◦◦sym
= apps ◦wk◦ (id⊗Λ−1

I JyK)◦ (Λ(JgK◦wk◦ sym)⊗ id)◦ sym
= apps ◦ (id®Λ−1

I JyK)◦wk◦ (Λ(JgK◦wk◦ sym)⊗ id)◦ sym
= apps ◦ (id®Λ−1

I JyK)◦wk◦ sym◦ (id⊗Λ(JgK◦wk◦ sym))

= unit( ◦ (JyK( id)◦ lfe◦wk◦ sym◦ (id⊗Λ(JgK◦wk◦ sym)) using Proposition 2.5.1

= unit( ◦ (JyK( id)◦ lfe◦wk◦ sym◦ (id⊗Λ−1
I (ΛIΛ(JgK◦wk◦ sym)))

= unit( ◦ (JyK( id)◦ lfe◦wk◦ sym◦ (id⊗Λ−1
I (pasc−1

( ◦ΛI (JgK◦wk◦ sym)))

= unit( ◦ (JyK( id)◦ lfe◦wk◦ sym◦ (id⊗Λ−1
I (pasc−1

( ◦ (sym( id)◦ΛI (JgK◦wk)))

= unit( ◦ (JyK( id)◦ lfe◦ (Λ−1
I (pasc−1

( ◦ (sym( id)◦ΛI (JgK◦wk))® id)◦wk◦ sym
= JP�

> (P−
>(P�(y)))K◦ (Λ−1

I JPO⊥ (P+
⊥(PO1(g)))K® id)◦wk◦ sym as required.

Finally, Jcut2(P�
> (P−

>(P� y)),PO⊥ (P+
⊥(PO2 g)))K

= JPO2(cut(g, y))K
= JgK◦ (id®Λ−1

I JyK)◦wk◦ sym
= JgK◦wk◦ (id⊗Λ−1

I y)◦ sym
= app◦ (Λ(JgK◦wk)⊗ id)◦ (id⊗Λ−1

I y)◦ sym
= apps ◦wk◦ (Λ(JgK◦wk)⊗Λ−1

I y)◦ sym
= apps ◦wk◦ (id⊗Λ−1

I y)◦ (Λ(JgK◦wk)⊗ id)◦ sym
= apps ◦ (id®Λ−1

I y)◦wk◦ sym◦ (id⊗Λ(JgK◦wk))

= apps ◦ (id®Λ−1
I y)◦wk◦ sym◦ (id⊗Λ−1

I (pasc−1
( ◦ΛI (JgK◦wk)))

= apps ◦ (id®Λ−1
I y)◦wk◦ sym◦ (id⊗Λ−1

I (pasc−1
( ◦ (sym( id)◦ΛI (JgK◦wk◦ sym)))

= unit( ◦ (JyK( id)◦ lfe◦wk◦sym◦ (id⊗Λ−1
I (pasc−1

( ◦ (sym( id)◦ΛI (JgK◦wk◦sym)))

= JP�
> (P−

>(P� y))K◦wk ◦ sym◦ (id⊗Λ−1
I (JPO⊥ (P+

⊥(PO2(g)))K)) as required.



2.5.3 Isomorphism of Complete WS-categories

We can use the soundness of cut elimination to show that the composition operation

in a complete WS-category is in some sense determined, between objects that are the

interpretation of some WS formula.

Definition Let C be a WS-category. We define C WS to be a category whose objects are

WS-formulas and an arrow M → N is an element of C (JMK,JNK).

Theorem 2.5.6 If C and D are complete WS-categories, then C WS and DW S are isomor-

phic.

Proof Given a proof p of a sequent of WS, we will write JpKC for the denotation of p in

the category C .

First, we make an observation. In any complete WS-category, Jcut(reify(ΛI f ),reify(ΛI g))K
=ΛI (Λ−1

I (Jreify(ΛI f )K)◦Λ−1
I (Jreify(ΛI g)K))

=ΛI (Λ−1
I (ΛI f )◦Λ−1

I (ΛI g))

=ΛI ( f ◦ g)

= Jreify(ΛI ( f ◦g))K. Since reify(ΛI ( f ◦g)) and cut(reify(ΛI ( f )),reify(ΛI (g))) are two analytic

proofs with the same semantics they must be equal, by Theorem 2.4.2.

We define an identity-on-objects functor F : C WS → DWS. On arrows, we set F( f ) =
Λ−1

I (Jreify(ΛI ( f ))KD).

• F preserves composition: F( f ◦ g)

=Λ−1
I (Jreify(ΛI ( f ◦ g))KD)

=Λ−1
I (Jcut(reify(ΛI f ),reify(ΛI g))KD)

=Λ−1
I (Jreify(ΛI f )KD)◦Λ−1

I (Jreify(ΛI g)KD)

= F( f )◦F(g)

• F is surjective on hom-sets: We have f = F(Λ−1
I (Jreify(ΛI ( f ))KC )). To see this, note

that F(Λ−1
I (Jreify(ΛI ( f ))KC ))

=Λ−1
I (Jreify(ΛI (Λ−1

I (Jreify(ΛI ( f ))KC )))KD)

=Λ−1
I (Jreify(Jreify(ΛI ( f ))KC ))KD)

=Λ−1
I (Jreify(ΛI ( f ))KD)

=Λ−1
I (ΛI ( f ))

= f .

• F is injective on hom-sets: If F( f )= F(g) then Λ−1
I (Jreify(ΛI ( f ))KD)=Λ−1

I (Jreify
(ΛI (g))KD) so Jreify(ΛI ( f ))KD = Jreify(ΛI (g))KD . Then by applying reify to both sides,

we see that reify(ΛI ( f )) = reify(ΛI (g)). By taking the semantics of both sides in C

we see that ΛI ( f )=ΛI (g), and so f = g.



• F preserves the identity: We can show that F(id) is the identity in DWS using the

above facts. In particular F(id)◦ f = F(id)◦F(F−1( f ))= F(id◦F−1( f ))= F(F−1( f ))= f

and f ◦F(id)= F(F−1( f ))◦F(id)= F(F−1( f )◦ id)= F(F−1( f ))= f .

• F is surjective on objects: This is clear, as F is identity-on-objects.

2.6 Embedding Polarized Linear Logic in WS

Polarized Linear Logic [53] is a polarisation of linear logic into negative and positive

formulas, representing computation and value types, broadly speaking. The linear frag-

ment MALLP can be embedded in WS, as families of formulas and proofs. We describe

the embedding here, which will be of use in Chapter 5.

In the proof derivations in the rest of this thesis, we will not always label core rules

when the label can be inferred from the premises and the conclusion. Further, we will

often combine sequences of core rules into a single rule, when the sequence is unique

and can be inferred (in particular the core elimination rules and P®,P�).

The formulas of MALLP are as follows:

P := 1 | 0 | P ⊗Q | P�Q | ↓ N

N := ⊥ | > | MON | M&N | ↑ P

There is an operation (−)⊥ exchanging polarity, swapping 1 for ⊥, 0 for >, ⊗ for O, and

so on.

We can immediately note the similarity between the connectives of LLP and some of

the connectives of WS!, although the polarities do not match up (see Section 2.2.1).

A sequent of MALLP is a list of MALLP formulas. The proof rules for Polarized Linear

Logic are given in Figure 2-14. Γ− ranges over lists of negative formulas, and Γ′ over lists

where at most one formula is positive. Each provable sequent has at most one positive

formula, so we can restrict our attention to sequents of this form. It is possible to give

semantics to MALLP proofs as innocent strategies [53], which do not have access to the

entire history of play.

We next describe an embedding of MALLP inside WS. Apart from some renaming

of units, connectives in LLP will be interpreted by the connective of the same name in

WS. Broadly speaking, positive formulas of LLP will be mapped to negative formulas

of WS, and negative formulas of LLP to positive formulas of WS. However, under this

scheme there is a mismatch for the additives: we will resultantly need to map formulas

of LLP to families of WS formulas. For example, we can represent a “disjunction” of

negative formulas by a family of negative formulas together with a proof of one of them.



Figure 2-14: Proof rules for MALLP

ax
` N, N⊥ `Γ, N `∆, N⊥

cut `Γ,∆
`Γ,P `∆,Q⊗ `Γ,∆,P ⊗Q

`Γ, M, NO `Γ, MON
`Γ,P⊕1 `Γ,P ⊕Q

`Γ,Q⊕2 `Γ,P ⊕Q
`Γ, M `Γ, N

& `Γ, M&N
1 ` 1

`Γ⊥ `Γ,⊥
> `Γ′,>

`Γ−, N↓ `Γ−,↓ N
`Γ,P↑ `Γ,↑ P

`Γ, A,B,∆ex `Γ,B, A,∆

The formulas that have a lift as their outermost connective will be mapped to singleton

families.

2.6.1 Translation of Formulas

Let WS− denote the set of negative WS formulas, and WS+ the set of positive WS formu-

las.

Definition A finite family of negative (resp. positive) WS formulas is a pair (I, f ) where

I is a finite set and f : I →WS− (resp. I →WS+).

For brevity, given such a family F = (I, f ) we will write |F| for I and Fx for f (x).

We will interpret a negative formula of MALLP as a finite family of positive WS

formulas, and a positive formula of MALLP as a finite family of negative WS formulas.

We describe this mapping in Figure 2-15. We can see that |i(A⊥)| = |i(A)| and i(A⊥)y =
i(A)⊥y .

By composing this mapping with our interpretation of WS formulas, one obtains a

semantics of LLP formulas with respect to families of games, inverting polarity. This dif-

fers from the original innocent games model of LLP [53], which does not invert polarity.

In Laurent’s setting, the interpretation of tensor is a non-standard operation on positive

games, where Player starts and Opponent may switch. This is facilitated by the fact that

Player’s first move in P⊗Q is a pair of moves (p, q) from each component. We could give

an embedding of LLP into WS based on this semantics by defining Laurent’s positive ⊗
operator as a macro on positive WS formulas and appealing to full completeness, but we

instead chose this embedding to use the non-core rules of WS directly.



Figure 2-15: MALLP formulas as families of WS formulas

A ∈ LLP i(A) ∈ Fam WS
1 ({∗},_ 7→ 1)
0 ({∗},_ 7→⊥)
P ⊗Q (|i(P)|× |i(Q)|,〈x, y〉 7→ i(P)x ⊗ i(Q)y)
P ⊕Q (|i(P)|] |i(Q)|, [in1(x) 7→ i(P)x, in2(y) 7→ i(Q)y]
↓ N ({∗},_ 7→& j∈|i(N)|(⊥� i(N) j)
⊥ ({∗},_ 7→ 0)
> ({∗},_ 7→>)
MON (|i(M)|× |i(N)|,〈x, y〉 7→ i(M)xOi(N)y))
M&N (|i(M)|] |i(N)|, [in1(x) 7→ i(M)x, in2(y) 7→ i(N)y]
↑ P ({∗},_ 7→⊕

j∈|i(P)|(>® i(P) j)

2.6.2 Translation of Proofs

We translate proofs of LLP to families of proofs of WS in the following manner:

• Given an LLP proof p of ` N1, . . . , Nn and xi ∈ |i(Ni)| for each i, we construct a proof

i(p,−→xi ) of `⊥, i(N1)x1 , . . . , i(Nn)xn

• Given an LLP proof p of ` N1, . . . , Ni,Q, Ni+1, . . . , Nn and xi ∈ |i(Ni)| for each i, we

construct a pair i(p,−→xi )= (y, q) where y ∈ |i(Q)| and q is a proof of

` i(Q)y, i(N1)x1 , . . . , i(Nn)xn .

Proposition 2.6.1 For each LLP formula P, y ∈ |i(P)| and sequence of negative WS for-

mulas ∆− there is a WS proof P>
P,y ` i(P)y,∆−,>

Proof Simple induction on P. Set P>
1,∗ =P1 and P>

0,∗ =

`>
`⊥,>(P−

⊥)∗ `⊥,∆−,>
where (P−

⊥)∗ denotes repeated use of P−
⊥. Let P>

P1⊕P2,ini(q) = P>
Pi ,q

and P>
P1⊗P2,(y1,y2) =

P⊗(P>
P1,y1

,P>
P2,y2

). P>
↓N,∗ is defined as follows:

`>
`⊥,>(P−

⊥)∗ `⊥,∆−,>
P+

wk `⊥, i(N) j,∆−,>
`⊥� i(N) j,∆−,> ...

`& j∈|i(N)|(⊥� i(N) j),∆−,>



with each branch following the same shape.

We next show how each of the MALLP proof rules are translated.

• The ax rule, with p = ax: For each x ∈ |i(N)| we set i(p, x) = (y, q) where y = x ∈
|i(N⊥)| and q is the proof of ` i(N⊥)x, i(N)x given by Pid.

• The cut rule, with p = cut(q, r):

Suppose Γ= N1, . . . , Nn and ∆= M1, . . . , Mm. Let xi ∈ |i(Ni)| and yi ∈ |i(Mi)|. Then

i(r,−→yi)= (y, t) with y ∈ |i(N⊥)| and t ` i(N⊥)y, i(M1)y1 , . . . , i(Mn)yn . Then i(q,−→xi , y)`
⊥, i(N1)x1 , . . . , i(Nn)xn , i(N)y. Applying Pcut to this proof and t results in a proof g

of `⊥, i(N1)x1 , . . . , i(Nn)xn , i(M1)y1 , . . . , i(Mm)ym and we set i(p,−→xi ,−→yi)= g.

Suppose Γ= N1, . . . , Ni,P, Ni+1, . . . Nn and ∆= M1, . . . , Mm. Let xi ∈ |i(Ni)| and yi ∈
|i(Mi)|. Then i(r,−→yi) = (y, t) with y ∈ |i(N⊥)| and t ` i(N⊥)y, i(M1)y1 , . . . , i(Mn)yn .

Then i(q,−→xi , y) = (y′, q′) where y′ ∈ |i(P)| and q′ ` i(P)y′ , i(N1)x1 , . . . , i(Nn)xn , i(N)y.

Applying Pcut to this proof and t results in a proof g of

` i(P)y′ , i(N1)x1 , . . . , i(Nn)xn , i(M1)y1 , . . . , i(Mm)ym

and we set i(p,−→xi ,−→yi)= (y′, g).

• The ⊗ rule, with p = ⊗(q1, q2): Suppose that Γ = N1, . . . , Nn and xi ∈ |i(Ni)| and

∆ = M1, . . . Mm with yi ∈ |i(Mi)|. Let i(q1,−→xi ) = (w, q′
1) with w ∈ |i(P)| and q′

1 `
i(P)w, i(N1)x1 , . . . , i(Nn)xn . Let i(q2,−→yi)= (z, q′

2) with q′
2 ` i(Q)z, i(M1)y1 , . . . , i(Mm)ym .

By applying Pmul and P⊗, we construct a proof

pq ` i(P)w ⊗ i(Q)z, i(N1)x1 , . . . , i(Nn)xn , i(M1)y1 , . . . , i(Mm)ym

We set i(p,−→xi ,−→yi)= ((w, z), pq).

• The O rule, with p =O(q1, q2):

Suppose that Γ= N1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(MOL)|. Then x = (m, l) with

m ∈ |i(M)| and l ∈ |i(L)|. Then i(q,−→xi ,m, l)= q′ where

q′ `⊥, i(N1)x1 , . . . , i(Nn)xn , i(M)m, i(L)l . Let q′′ =PT
O(q), a proof of

`⊥, i(N1)x1 , . . . , i(Nn)xn , i(M)mOi(L)l

We set i(p,−→xi , x)= q′′.

Suppose that Γ= N1, . . . , Ni,P, Ni+1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(MOL)|. Then

x = (m, l) with m ∈ |i(M)| and l ∈ |i(L)|. Then i(q,−→xi ,m, l) = (y, q′) where y ∈ |i(P)|



and q′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(M)m, i(L)l . Let q′′ =PT
O(q), a proof of

` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(M)mOi(L)l . We set i(p,−→xi , x)= (y, q′′).

• The ⊕1 rule, with p = ⊕1(q): Suppose that Γ = N1, . . . , Nn and xi ∈ |i(Ni)|. Then

i(q,−→xi ) = (y, q′) where y ∈ |i(P)| and q′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn . We set i(p,−→xi ) =
(in1(y), q′). The case for ⊕2 is similar.

• The & rule, proving `Γ, M1&M2 with p =&(q1, q2):

Suppose that Γ = N1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(M1&M2)|. Then x = in j(x′)
with x′ ∈ |i(M j)|. Then i(q j,−→xi , x′) = q′ with q′ `⊥, i(N1)x1 , . . . , i(Nn)xn , i(M j)x′ . Set

i(p,−→xi , x)= q′.

Suppose that Γ = N1, . . . , Ni,P, Ni+1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(M1&M2)|.
Then x = in j(x′) with x′ ∈ |i(M j)|. Then i(q j,−→xi , x′) = (y, q′) with y ∈ |i(P)| and q′ `
i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(M j)x′ . Set i(p,−→xi , x)= (y, q′).

• The 1 rule: We set i(1)= (∗,P1).

• The ⊥ rule, with p =⊥(q):

Suppose that Γ= N1, . . . , Nn and xi ∈ |i(Ni)|. Then i(q,−→xi ) = q′ which is a WS proof

of `⊥, i(N1)x1 , . . . , i(Nn)xn . By applying PT
0 this yields a proof

q′′ `⊥, i(N1)x1 , . . . , i(Nn)xn ,0. We thus set i(p)= q′′.

Suppose that Γ = N1, . . . , Ni,P, Ni+1, . . . Nn and xi ∈ |i(Ni)|. Then i(q,−→xi ) = (y, q′)
with y ∈ |i(P)| and q′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn . By applying PT

0 this yields a

proof q′′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn ,0. We thus set i(p)= (y, q′′).

• The > rule:

Suppose Γ= N1, . . . , Nn and xi ∈ |i(Ni)|. We must give a proof of

`⊥, i(N1)x1 , . . . , i(Nn)xn ,> and we use P>
0,∗ of Proposition 2.6.1.

Suppose Γ = N1, . . . , Ni,P, Ni+1, . . . Nn and xi ∈ |i(Ni)|. We must give a y ∈ |i(P)|
and a proof of ` i(P)y, i(N1)x1 , . . . , i(Nn)xn ,>. Since |i(P)| is finite, we can chose an

arbitrary element, and give the proof of ` i(P)y, i(N1)x1 , . . . , i(Nn)xn ,> using P>
P,y of

Proposition 2.6.1.

• The ↓ rule: Let Γ− = N1, . . . , Nn and xi ∈ |i(Ni)|. For each j ∈ |i(N)|, i(q,−→xi , j) `
⊥, i(N1)x1 , . . . , i(Nn)xn , i(N) j. We then perform the following derivation r j:

i(q,−→xi ,n)`⊥, i(N1)x1 , . . . , i(Nn)xn , i(N) j
Psym `⊥, i(N) j, i(N1)x1 , . . . , i(Nn)xn

`⊥� i(N) j, i(N1)x1 , . . . , i(Nn)xn



Using many applications of P& we can construct a proof

r `& j∈|i(N)|(⊥� i(N) j), i(N1)x1 , . . . , i(Nn)xn

We then set i(p,−→xi )= (∗, r).

• The ↑ rule, with p =↑ (q): Let Γ = N1, . . . , Nn and xi ∈ |i(Ni)|. Then i(q,−→xi ) = (y, q)

where q ` i(P)y, i(N1)x1 , . . . , i(Nn)xn . We set i(p,−→xi ) to be the following proof:

q ` i(P)y, i(N1)x1 , . . . , i(Nn)xn

`>, i(P)y, i(N1)x1 , . . . , i(Nn)xn

`>® i(P)y, i(N1)x1 , . . . , i(Nn)xnP⊕ y `⊕
j∈|i(P)|>® i(P) j, i(N1)x1 , . . . , i(Nn)xn

`⊥, i(N1)x1O . . .Oi(Nn)xnO(
⊕

j∈|i(P)|>® i(P) j)
`⊥, i(N1)x1 , . . . , i(Nn)xn ,

⊕
j∈|i(P)|>® i(P) j

Note that in the semantics of this rule two moves are played: the opening lift

overall (O-move) and the the opening lift in the derelicted component (P-move),

which corresponds to “focusing” on that component.

• The ex rule, with p = ex(q):

If either A or B are positive, then we can set i(p)= i(q).

Next suppose A and B are both negative, Γ = N1, . . . , Nn and ∆ = M1, . . . , Mm.

Let xi ∈ |i(Ni)| ; yi ∈ |i(Mi)| ; a ∈ |i(A)| and b ∈ |i(B)|. Then i(q,−→xi ,a,b,−→yi) `
⊥, i(N1)x1 , . . . , i(Nn)xn , i(A)a, i(B)b, i(M1)y1 , , i(Mm)ym and by applying Psym we ob-

tain a proof q′ of

`⊥, i(N1)x1 , . . . , i(Nn)xn , i(B)b, i(A)a, i(M1)y1 , . . . , i(Mm)ym

and set i(p,−→xi ,b,a,−→yi)= q′.

Next suppose A and B are both negative, with Γ= N1, . . . , Nn and

∆= M1, . . . , Mi,P, Mi+1, . . . Mm. Let xi ∈ |i(Ni)| ; yi ∈ |i(Mi)| ; a ∈ |i(A)| and b ∈ |i(B)|.
Then i(q,−→xi ,a,b,−→yi)= (y, q′) where y ∈ |i(P)| and

q ` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(A)a, i(B)b, i(M1)y1 , . . . , i(Mm)ym

and by applying Psym we obtain a proof q′ of

` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(B)b, i(A)a, i(M1)y1 , . . . , i(Mm)ym



and set i(p,−→xi ,b,a,−→yi)= q′.

The case where Γ= N1, . . . , Ni,P, Ni+1, . . . , Nn is entirely similar.

We can hence interpret proofs in MALLP as (families of) proofs in WS.

This concludes our treatment of the multiplicative-additive kernel of WS. In the next

chapters, we will see how further expressivity can be added. First, we will consider an

exponential structure that leads us into the realm of infinite games.



Chapter 3

Exponentials

The logic introduced in Chapter 2 is affine — a proof of A ( B may use its argument at

most once. We next introduce exponentials into WS, yielding the full expressivity of Intu-

itionistic Linear Logic. This leads us to consider infinite games and winning conditions.

In this setting we represent the exponential in the logic explicitly as a final coalgebra.

3.1 Introduction

3.1.1 Exponentials in Game Semantics

We next introduce exponential modalities into our logic. This is a unary operator ! that

transforms a resource A that can only be used once to a reusable resource ! A: there are

maps ! A ( ! A⊗ ! A and ! A ( A. Since proofs correspond to games, it is in the spirit of

our programme to explicitly base the exponential on some exponential comonad in the

category of games. As identified in [58], there are multiple choices:

• A non-repetitive backtracking exponential introduced by Lamarche [52]

• An exponential based on infinitely many copies of the subgame [7,36]

• A backtracking exponential where repetition is allowed [31].

We will choose to study the second exponential, for its use in modelling imperative

programming languages. For example, the game model of Idealized Algol given in [8]

is set in the Kleisli category of this comonad. Thus, we will be able to embed Idealized

Algol over finitary ground types in our logic. The other exponentials also have uses in

modelling languages: for example, a fully abstract model of PCF with catch can be given

using the first exponential [22] and the third can be used to formalise innocent strategies

over an arena [31], an interpretation of purely functional programs.



3.1.2 Chapter Overview

In this chapter, we will first describe this exponential on games. We will observe that

this second exponential !A is the carrier of the final coalgebra of the functor X 7→ A® X

and show how this fact can be used to derive both the usual linear exponential structure

(promotion) and also stateful behaviour: for example, a reusable Boolean cell is the

anamorphism of a finite strategy.

We can represent the fact that !A is the final coalgebra of this functor in the logic, in

the style of [20]. Using the above observations, we can then encode both full Intuition-

istic Linear Logic and stateful objects such as a Boolean cell. We give semantics to the

resulting logic.

We will then consider full completeness. The reification procedure from Chapter 2

extends in a simple manner, but it only terminates for finite strategies (without the

exponentials, all strategies are finite). However, we will see that we can reify arbitrary

total strategies as infinitary analytic proofs — analytic proofs that may have infinite

depth — and so for each proof, we can construct the unique infinitary analytic proof with

the same semantics.

3.1.3 The Need for a Winning Condition

Our proofs are interpreted as total strategies on the appropriate game. However, total

strategies only compose when the underlying games are bounded. For example, we note

that there are unique total strategies σ : I →Σ∗ and τ :Σ∗ (⊥ where Σ∗ is as in Section

2.1.4. However the composition τ◦σ : I →⊥ is the empty strategy, which is not total. The

source of the problem is that ‘infinite chattering’ can occur in the hidden component, so

the three-way dialogue continues to be live but no moves are externally visible.

I → Σ∗ → ⊥
q O

q P

a O

q P

a O
...

For the semantics of WS, this is not a problem as the denotation of every formula is

bounded. However, our exponential of choice does not preserve boundedness.

A standard solution to this problem is to introduce winning conditions on games: we

add an extra component to the definition of game describing which infinite plays are won



by Player and which are won by Opponent. We follow the approach of [36]. In particular,

an infinite play on A ( B is P-winning if it is P-winning on B or O-winning on A. We

then require that strategies contain only winning plays. This breaks the example above,

as the unique infinite play in Σ∗ must be designated either P-winning or O-winning. In

the former case τ is not a winning strategy; in the latter case σ is not a winning strategy.

3.2 Games and Winning Conditions

3.2.1 Win-games

If A is a set, let Aω denote the set of infinite sequences on A; and if s is such a sequence

write t< s if t is a finite prefix of s. We extend the restriction notation in Section 2.1.2

to infinite plays, noting that s|i may be finite or infinite. Dually, if s ∈ Xω
i we write inωi (s)

for the corresponding sequence in (X1 + X2)ω.

If A is a game, let PA = {s ∈ Mω
A :∀t< s.t ∈ PA}. Thus PA represents the infinite limits

of plays in PA (the ‘infinite plays’). We add a notion of winning conditions to games, as

in [36].

Definition A win-game is a tuple (MA,λA,bA,PA,WA) where (MA,λA,bA,PA) is a game

and WA ⊆ PA.

WA represents the set of infinite plays that are P-winning; we say an infinite play is

O-winning if it is not P-winning. We can extend the notion of winner of a play to finite

plays, where the last player to play a move in that play wins. More formally, let we let

W∗
A =WA ∪EA where EA is the set of plays that end in a P-move.

3.2.2 Connectives on Win-games

We extend our connectives on games to connectives on win-games.

• Units — For A ∈ {1,0,>,⊥}, PA = ; — there are no infinite plays, and so we take

WA =;, as we must.

• Tensor — An infinite play in M⊗N is P-winning if its restriction to M is P-winning

and its restriction to N is P-winning. Formally, WM⊗N = {s ∈ Pω
M⊗N : s|1 ∈W∗

M∧s|2 ∈
W∗

N }.

• Sequoid — Similarly, an infinite play in A®N is P-winning if both of its restrictions

are P-winning: WA®N = {s ∈ Pω
A®N : s|1 ∈W∗

A ∧ s|2 ∈W∗
N }.

• Par — An infinite play in POQ is P-winning if its restriction to P is P-winning or

its restriction to Q is P-winning. Formally, WPOQ = {s ∈ Pω
POQ : s|1 ∈W∗

P ∨ s|2 ∈W∗
Q}.



• Cosequoid — Similarly, an infinite play in A play in A�P is P-winning if either of

its restrictions are P-winning: WA�Q = {s ∈ Pω
A�Q : s|1 ∈W∗

A ∨ s|2 ∈W∗
Q}.

• Product — An infinite play in M&N is P-winning if its restriction to M is P-

winning (if it is a play in M) or its restriction to N is P-winning (if it is a play

in N). Thus, WM&N = {inω1 (s) : s ∈WM}∪ {inω2 (s) : s ∈WN }.

• Sum — Similarly, an infinite play in P ⊕Q is P-winning if it is P-winning in the

relevant component: WP⊕Q = {inω1 (s) : s ∈WP }∪ {inω2 (s) : s ∈WQ}.

We extend negation A⊥ to win-games by setting WA⊥ = PA −WA. We have the usual

duality between ⊗ and O, ® and �, & and ⊕.

Again we set M ( N = N�M⊥. Then a play s ∈ PM(N is P-winning if s|N is P-

winning or s|M⊥ is P-winning, i.e. if s|N is P-winning or s|M is O-winning, i.e. if s|M
P-winning implies s|N P-winning.

3.2.3 Winning Strategies

Our notion of (total) strategies on games lifts to win-games.

Definition A strategy σ on a win-game A is winning if

• σ is total

• If s ∈ PA and all prefixes of s ending in a P-move are in σ, then s ∈WA.

It is known that the composition of two winning strategies is itself winning [36].

Proposition 3.2.1 If σ : M ( N and τ : N ( L are winning strategies then τ ◦σ is

winning.

Proof If τ◦σ is not total then there must be an infinite interaction sequence s with all

finite prefixes in σ‖τ with infinite chattering in N: s = tr where all moves in r occur in N.

Suppose s|N = t|N r ∈WN . Then since τ is winning and t|N,Lr ∈ τ it follows that t|L ∈W∗
L .

Since this play is finite, it must end in a Player-move. But this is impossible since in any

play in M ( N it must be Player who switches components. So we must have s|N 6∈WN .

But then since σ is winning we must have t|M 6∈ W∗
M i.e. t|M ends in an O-move. But

this means that t|M(N |M ends in a P-move, which is again impossible by the switching

condition for σ. Thus such infinite chattering cannot occur, and τ◦σ is total.

We can also show that τ ◦σ satisfies the second condition. Let t ∈ Pω
M(L be such

that each prefix of t ending in a P-move is in τ ◦σ. Then there is a unique interaction

sequence s such that s|M,L = t and each finite prefix of s is in σ‖τ. We need to show



that s|M,L ∈ WM(L i.e. s|M ∈ W∗
M ⇒ s|L ∈ W∗

L . Suppose that s|M ∈ W∗
M . Then since σ is

winning and all finite prefixes of s|M,N are in σ, we must have s|M,N ∈WM(N . But since

s|M ∈W∗
M we must have s|N ∈W∗

N . Then since τ is winning and all finite prefixes of s|N,L

are in τ we must have s|L ∈W∗
L . Thus, t = s|M,L ∈WM(L, as required.

3.2.4 Categorical Structure

We know that winning strategies compose, and it is easy to see that the identity strategy

idA : A ( A is winning for any A. We can thus construct a category W of win-games and

winning strategies. This category is symmetric monoidal closed with respect to (I,⊗,()

and (I,&) provides finite products [36]. Once again we can identify a sequoidal closed

structure with an action ® : Ws×W →Ws where Ws is the full-on-objects subcategory of W

given by strategies that are both strict and winning. The mediating isomorphisms are

all essentially copycat strategies, as in G .

Proposition 3.2.2 W is a complete WS-category.

We can thus interpret WS inside W in a fully complete manner.

There is a functor U : W → G that simply forgets the winning condition. There is

also a functor F : Gt →W with F(A)= (MA,λA,PA,;). Note that U(F(A))= A and if A is

bounded then F(U(A))= A.

We will write Gw for the category of win-games and (not-necessarily winning) strate-

gies. Since Gw is equivalent to G , we will often omit the subscript w if its presence is

irrelevant or can be inferred.

3.3 Sequoidal Exponential as a Final Coalgebra

We now describe the exponential comonad on W that we have chosen to study. This

appears in [7,36].

3.3.1 Sequoidal Exponential

Exponential Connectives

Let N be a negative win-game. We can consider ! N to be the game consisting of an infi-

nite number of copies of N, where Opponent can spawn new copies and switch between

copies he has opened. The game ! N is played over MN ×N and copies must be opened

in successive order. An infinite play is winning just if it is winning in each component.

Thus, we define

! N = (MN ×N,λN ◦π1, {s :∀i.s|i ∈ PN ∧ s|i = ε⇒ s|i+1 = ε}, {s :∀i.s|i ∈W∗
N }).



As with the tensor, there is an implicit switching condition: since the play overall must

be alternating, and the play restricted to each component must be alternating, it follows

that only Opponent can switch between copies and open new copies.

Dually, if Q is a positive game we define ?Q to be the game consisting of an infinite

number of copies of Q, where Player can spawn new copies and switch between them.

An infinite play is winning if it is winning in at least one component.

?Q = (MQ ×N,λQ ◦π1, {s :∀i.s|i ∈ PQ ∧ s|i = ε⇒ s|i+1 = ε}, {s : ∃i.s|i ∈W∗
Q})

Given a strategy σ : N, we can construct a strategy σ† : ! N which, in each copy, be-

haves as σ. However, since our strategies are history-sensitive, there are also strategies

on ! N which behave differently in each copy, and whose behaviour in one copy can depend

on what has previously happened in other copies.

Linear Exponential Comonad

It is well known that we can model the exponential modality of linear logic in a sym-

metric monoidal closed category by a linear exponential comonad [72]. This is a functor

! : C → C with maps der : ! A → A, mult : ! A ( ! ! A and d : ! A ( ! A ⊗ ! A satisfying

some further structure and properties. There is a promotion operator (−)† taking a map

! A → B to a map ! A → !B. Each of the exponentials defined in Section 3.1.1 are linear

exponential comonads.

For our chosen exponential, the der, mult and d operators are all copycat strategies.

• The strategy der : ! A ( A simply uses the first copy of A in ! A.

• In mult : ! A → ! ! A, each time a copy of A is opened on the right in ! ! A (whether it

is an ‘inner’ copy or an ‘outer’ copy) a new copy of A is opened on the left.

• For d : ! A ( ! A ⊗ ! A, each new copy of A in ! A ⊗ ! A (whether it is in the left

component or the right component) opens a new copy of A in the argument.

• If σ : ! A → B the strategy σ† : ! A → !B behaves as σ in each copy.

For any linear exponential comonad, we have isomorphisms !(A&B)∼= ! A⊗ !B: again

in our current setting these are just copycat strategies.

Cofree Commutative Comonoid

It is also known that a cofree commutative comonoid [42, 62] is sufficient to model the

linear logic exponential in a symmetric monoidal category. This also provides the opera-

tions described above, derived from a stronger universal property.



A comonoid in a category C is an object A together with maps m : A ( A ⊗ A and

u : A → I satisfying some coherence conditions (associativity and identity). In our setting

since I is the terminal object, u = t and we need not consider it as part of the data for a

comonoid. A morphism of comonoids f : (A,mA)→ (B,mB) is a morphism f : A → B such

that mB ◦ f = ( f ⊗ f )◦mA.

A comonoid is commutative if sym ◦ m = m. In a decomposable sequoidal category

there is an isomorphism dec : A⊗ A ∼= (A® A)× (A® A), and the symmetry law is equiva-

lent to π1◦dec◦m =π2◦dec◦m, i.e. dec◦m = 〈d,d〉 for some map d : A → A®A. Thus, in a

sequoidal closed category, a commutative comonoid is equivalent to a map m : A → A®A

satisfying some coherence conditions (associativity and identity). Note that morphisms

of commutative comonoids in a sequoidal closed category do not admit a similar treat-

ment (one would like to consider maps f : (A,dA)→ (B,dB) such that dA ◦ f = ( f ® f )◦dB,

but this is only well-defined for strict f ).

We next speak of cofree commutative comonoids. Given a symmetric monoidal cate-

gory C one can construct the category of commutative comonoids comonoids(C ), where

an object is a commutative comonoid and a morphism is a comonoid morphism. There is

an evident forgetful functor U : comonoids(C ) → C and one may ask if this functor has

a right adjoint F: if it does, then F(A) is the cofree commutative comonoid over A. This

states that for each A there is a commutative comonoid mF(A) : F(A)→ F(A)⊗F(A) and

map ηA : F(A) → A, such that for any commutative comonoid mB : B → B⊗B and map

f : B → A there is a unique morphism f † : B → F(A) such that mF(A) ◦ f † = ( f † ⊗ f †)◦mB

and f = ηA ◦ f †.

A �
ηA F(A)

mF(A)- F(A)⊗F(A)

B

f †

6
............... mB -

�

f

B⊗B

f † ⊗ f †

6
...............

In the case that F(A) = (! A,d) then dereliction is ηA and promotion is f 7→ f †. The

sequoidal exponential is the cofree commutative comonoid in G and W [51].

Boolean Cell Strategy

Since our strategies are history-sensitive, we can construct strategies on ! N that are not

merely the promotion of a strategy on N. For example, let B be the game of Booleans

⊥�(>⊕>) (we will call the opening move q and its two responses tt and ff — a dialogue

consists of Opponent asking for a Boolean, and then Player giving him one). Then there

is a strategy on !B which alternates between tt and ff responses:



!B
q O

tt P

q O

ff P

q O

tt P
...

More elaborately, let Bi = (⊥&⊥)�> (here Opponent gives an input tt or ff and

Player responds with a). Then !B⊗ !Bi ∼= !(B&Bi) represents the type of a Boolean

storage cell: it has a ‘read’ method (where Opponent asks for a Boolean and Player gives

him one) and a ‘write’ method (where Opponent specifies a value to be written, and

Player gives a confirmation). The exponential ensures that these methods can be ‘called’

arbitrarily many times. Thus we have a strategy cell on this type representing a reusable

Boolean cell. This strategy is used to give the semantics of the new-variable constructor

of Idealized Algol in the fully abstract game semantics given in [8]. An example play is

as follows:

!(B & Bi)
tt O

a P

q O

tt P

q O

tt P

ff O

a P

q O

ff P
...

Here the behaviour of the strategy in each copy depends on what has previously hap-

pened in other copies (in the diagram above, all copies are compressed into a single

column, the moves in odd positions each open a new copy).

The above discussion is specific to our choice of exponential, and demonstrates how it

is well-suited for modelling imperative behaviour. The key isomorphism is ! N ∼= N ® ! N.



3.3.2 Final Coalgebra

Using our sequoidal operator ®, we can describe a canonical property that our specific

exponential ! N satisfies. As well as being the cofree commutative comonoid [51,62] it is

the final coalgebra of the functor X 7→ N ® X .

Final Coalgebras

Recall that a coalgebra for a functor F : C → C is an object A and a map A → F(A).

A final coalgebra is a terminal object in the category of coalgebras, that is a coalgebra

α : Z → F(Z) such that for any f : A → F(A) there is a unique $ f% : A → Z such that

α◦$ f%= F($ f%)◦ f .

A
f - F(A)

Z

$ f%

?

α
- F(Z)

F($ f%)

?

We call $ f% the anamorphism of f . There are some standard properties of anamor-

phisms [74]: as well as σ=$φ% if and only if α◦σ= F(σ)◦φ the following hold:

• Cancellation — α◦$φ%= F($φ%)◦φ

• Reflection — id=$α%

• Fusion — φ◦σ= F(σ)◦ψ⇒$φ%◦σ=$ψ%

• Isomorphism — α−1 =$F(α)%.

Exponential as a Final Coalgebra

We define the map α : ! N → N®! N by the copycat strategy wk◦(der⊗ id)◦d. This relabels

in1(a) on the right to (a,1) on the left and in2(a,n) on the right to (a,n+1) on the left.

Proposition 3.3.1 (! N,α) is the final coalgebra of the functor N ®_ in the category G .

Proof Let σ : M → N ®M. Define $σ%n : M → (N ®_)n(M) by $σ%0 = id and $σ%n+1 =
(id®_)n(σ)◦$σ%n.

M
$σ%n- (N ®_)n(M) (id®_)n(σ)- (N ®_)n(N ®M)= (N ®_)n+1(M)



The strategy $σ%n is a partial approximant to $σ% : M → ! N. We can show by

induction on n that $σ%n+1 = (id®$σ%n)◦σ. For n = 0 we have $σ%1 = (id®_)0(σ)◦ id=
σ= (id®id)◦σ= (id®$σ%0)◦σ as required. For n = m+1 we have$σ%m+2 = (id®_)m+1(σ)◦
$σ%m+1 = (id®(id®_)m(σ))◦(id®$σ%m)◦σ= (id®(id®_)m(σ)◦$σ%m)◦σ= (id®$σ%m+1)◦σ
as required.

Similarly, we can define αk : ! N ∼= (N®_)k(! N) :α−1
k by performing the above construc-

tion on α. Consider the sequence of maps M → ! N defined by sk =α−1
k ◦(id®_)k(ε)◦$σ%k

for k ∈ ω. We show that sk+1 w sk and so (sk) is a chain. For k = 0, the RHS is ε and so

we are done. Otherwise, sk+2 =α−1
k+2 ◦ (id®_)k+2(ε)◦$σ%k+2 =α−1 ◦ (id®α−1

k+1)◦ (id® (id®
_)k+1(ε))◦ (id®$σ%k+1)◦σ=α−1 ◦ (id®α−1

k+1 ◦ (id®_)k+1(ε)◦$σ%k+1)◦σvα−1 ◦ (id®α−1
k ◦

(id®_)k(ε)◦$σ%k)◦σ=α−1
k+1 ◦ (id®_)k+1(ε)◦$σ%k+1.

Set $σ%=⊔
α−1

k ◦ (id®_)k(ε)◦$σ%k, where ε is the empty strategy. It is well-known

that G is cpo-enriched with bottom element ε [51].

We wish to show that $σ% is the unique strategy such that α◦$σ%= (id®$σ%)◦σ.

To show that the equation holds, note that α ◦$σ% = α ◦⊔
α−1

k ◦ (id® _)k(ε) ◦$σ%k =
α◦⊔

α−1
k+1 ◦ (id®_)k+1(ε)◦$σ%k+1 =⊔

α◦α−1
k+1 ◦ (id®_)k+1(ε)◦$σ%k+1 =⊔

(id®α−1
k )◦ (id®

(id®_)k(ε))◦ (id®$σ%k)◦σ= (id®⊔
(α−1

k ◦ (id®_)k(ε)◦$σ%k)◦σ= (id®$σ%)◦σ.

For uniqueness, suppose that γ : M → ! N is such that α◦γ = (id®γ)◦σ. We wish to

show that γ=$σ%=⊔
α−1

k ◦ (id®_)k(ε)◦$σ%k. To see that γw$σ%, it suffices to show

that γ is an upper bound of the chain, i.e. γ w α−1
k ◦ (id® _)k(ε) ◦$σ%k for each k. We

proceed by induction on k. For k = 0 we are done, as the RHS is ε. Then α−1
k+1 ◦ (id®

_)k+1(ε)◦$σ%k+1 =α−1 ◦ (id®α−1
k )◦ (id® (id®_)k(ε))◦ (id®$σ%k)◦σvα−1 ◦ (id®γ)◦σ= γ.

Hence γ is an upper bound of this chain, so γw$σ%.

To see that γ v$σ%, we show that each play in γ is also in $σ%. Consider a play

s ∈ γ : M → ! N. Since s is finite, it must visit only a finite number of copies of N — say, k

copies. Then s is also a play in α−1
k ◦ (id®_)k(ε)◦αk ◦γ. If we show that α−1

k ◦ (id®_)k(ε)◦
αk ◦γvα−1

k ◦ (id®_)k(ε)◦$σ%k then we will be done, as we would have shown that s is a

play in one of the finite approximates of $σ%, and so s ∈$σ%.

It is thus sufficient to show that (id®_)k(ε)◦αk◦γv (id®_)k(ε)◦$σ%k. We show this by

induction on k. If k = 0, then the right hand side is ε and so we are done. If k = j+1 then

(id®_) j+1(ε)◦α j+1◦γ= (id®(id®_) j(ε))◦(id®α j)◦α◦γ= (id®(id®_) j(ε))◦(id®α j)◦(id®γ)◦σ=
(id® (id® _) j(ε) ◦α j ◦γ) ◦σ v (id® (id® _) j(ε) ◦$σ% j) ◦σ = (id® _) j+1(ε) ◦ (id®$σ% j) ◦σ =
(id®_) j+1(ε)◦$σ% j+1 as required.

Note that the above construction follows from the fact that !N is the minimal invari-

ant of N ® _ in G [51], from which it also follows that !N is also the initial algebra of

the same in G . This stronger property does not hold in W , although the final coalgebra

property does. This depends on the choice of winning condition for !, and alternative



winning conditions on the same game have been used elsewhere to move between initial

algebras and final coalgebras of a given functor [20].

Proposition 3.3.2 (! N,α) is the final coalgebra of N ®_ in the category W .

Proof The construction given above can take place in W . Given winning σ : M → N®M

we only need to check that $σ% is winning.

To see that $σ% is total, let s ∈$σ% and so ∈ P! N . Then so visits only finite k many

copies of N, and so up to retagging it is a play in M → (N®_)k(M), and s a play in $σ%k.

By totality of $σ%k, there is a move p with sop ∈$σ%k. Then, up to retagging, sop is

also a play in $σ%.

We next need to check that each infinite play with all even prefixes in $σ% is win-

ning. Let s be such an infinite play, with s|M winning. We must show that s|! N is

winning, i.e. s|(N,i) is winning for each i. The infinite play s corresponds to an infinite

interaction sequence:

M σ- N ®M id®σ- N ® (N ®M) id® (id®σ)- . . .

...

Then s|(N,i) can also be found in the ith column of the above interaction sequence. By

hiding all columns other than the first and the ith, we see a play in M → (N ®_)i(M) in

$σ%i. The first column is s|M (which is winning), and the ith component of the second

is s|(N,i). Since since $σ%i is a winning strategy, this play is winning, by the winning

condition for ®.

We will later need a further coalgebraic property of the operation ! in G , following

the observations above.

Proposition 3.3.3 Suppose φ : M → N ® M, σ : M → ! N and ψ : ! N → N ® ! N. 1. If

α◦σw (id®σ)◦φ then σw$φ%. 2. If (id®σ)◦φvψ◦σ then $φ%v$ψ%◦σ.

Proof 1. Suppose α◦σw (id®σ)◦φ. Then σwα−1 ◦ (id®σ)◦φ. To show that σw$φ%, it

suffices to show that for all k, σw α−1
k ◦ (id®_)k(ε)◦$φ%k. For k = 0 we are done as the

RHS is ε. For k = j+1, note that α−1
j+1 ◦ (id®_) j+1(ε)◦$φ% j+1 =α−1 ◦ (id®α−1

j )◦ (id® (id®
_) j(ε))◦ (id®$φ% j)◦φvα−1 ◦ (id®σ)◦φvσ.

2. To show that $φ%v$ψ%◦σ it is sufficient by 1 to show that (id®$ψ%◦σ)◦φv
α◦$ψ%◦σ. Since α◦$ψ%= (id®$ψ%)◦ψ we need to show that (id®$ψ%◦σ)◦φv (id®
$ψ%)◦ψ◦σ. But this is clear as (id®$ψ%◦σ)◦φ= (id®$ψ%)◦(id®σ)◦φv (id®$ψ%)◦ψ◦σ
as required.



Boolean Cell and Stack Example

We can express our Boolean cell strategy as the anamorphism of a finite strategy. Define

a parametrised cell cell′ : B→ !(B&Bi) as $ f% where f : B→ (B&Bi)®B. The strategy f

is defined as follows, with b ranging over {tt,ff}:

B ( (B & Bi) ® B B ( (B & Bi) ® B
q O b

q P a

b O q

b P b

q O

b P

Then cell= cell′ ◦tf where tf is the strategy on B specifying the starting value of the cell.

We can see the parameter to cell′ as being the explicitly propagated ‘state’ between the

interactions in the subsequent copies of B&Bi.
We can perform a similar treatment to construct a Boolean stack, with unbounded

memory. We can construct this using the anamorphism of a strategy that is a finite

sequence of moves followed by copycat. The type of the stack strategy is also !(B&Bi)
— the B component represents a ‘pop’ method and the Bi component a ‘push’ method.

We can consider a strategy stack′ : !B→ !(B&Bi) which represents a stack parametrised

by a ‘starting stack’ (the argument represents the behaviour that would be observed

by running ‘pop’ an arbitrary number of times). We set stack′ = $g% where g : !B →
(B&Bi)® !B is as follows:

!B ( (B & Bi) ® !B !B ( (B & Bi) ® !B
q O b

q P a

b O q

b P b

q O q

q P q

b′ O b′

b′ P b′
...

...

After the first four moves the strategy enters copycat. The initial stack s : !B can also be

defined by an anamorphism. For example, a stack containing ff elements can be defined



as $g% where g : I →B® I contains the unique maximal play qff.

Deriving the Exponential Structure

Just as we can derive dereliction from the fact that ! N is the final coalgebra of X 7→ N®X ,

we might hope to derive contraction, promotion and multiplication as well. This does not

seem to be possible, but starting from any one of the three the other two are derivable:

1. Contraction d : ! N → ! N ⊗ ! N (or equivalently con : ! N → ! N ® ! N)

2. Comonad multiplication mult : ! N → ! ! N

3. Promotion (−)† constructing a map ! N → ! M from a map ! N → M

For (1)⇒ (2) we can set mult=$con%. For (2)⇒ (1) we have con= (id®der)◦α◦mult. For

(1)⇒ (3) we can set σ† =$wk◦ (σ⊗ id)◦d%. For (3)⇒ (2) we have mult= id†.

We can make use of this in our categorical axiomatics. If we assume that ! N is the

carrier of a commutative comonoid with d : ! N → ! N⊗ ! N, we can use the final coalgebra

property to define the cofree commutative comonoid structure of !N. We can define ηA

and f † using the final coalgebraic and comonoid structure. Let ηA = der = unit® ◦ (id®
t) ◦α. If mB : B → B⊗B is a commutative comonoid and f : B → A, then we set f † =
$wk◦ ( f ⊗ id)◦mB%. The condition for ! to be the cofree commutative comonoid is that

f † : B → ! A is unique comonoid morphism such that f = ηA ◦ f †. Thus, if this property

is satisfied, our final coalgebra structure can be used to derive a cofree commutative

comonoid structure and be an instance of a known categorical characterisation of the

linear logic exponential.

Definition A sequoidal closed category C has a coalgebraic exponential comonoid if:

• The endofunctor N ® _ on C has a final coalgebra (! N,αN ) where αN ∈ Cs. Let

der : ! A → A be unit® ◦ (id® t)◦α

• For each N, ! N is the carrier of a commutative comonoid whose multiplication d is

strict and wk◦ (der⊗ id)◦d=α

!A α - A®!A

!A⊗!A

d

? der⊗ id- A⊗!A

wk

6



• For each commutative comonoid m : B → B⊗B and f : B → A, f † =$wk◦ ( f ⊗ id)◦
m% : B → ! A is the unique comonoid morphism such that f = der◦ f †.

A coalgebraic exponential comonoid is a cofree commutative comonoid, and so can be

used to model the exponential modality.

We pause to note that using the above construction ! f = ( f ◦der)† =$wk ◦ ( f ◦der⊗
id)◦d%. In the case that f is strict, this is $( f ® id)◦wk◦ (der⊗ id)◦d%=$( f ® id)◦α%.

Also, the family of maps d :!N →!N⊗!N is natural in N: this is equivalent to ! f being a

comonoid morphism, which holds using the third condition and the above expansion of

! f .

Proposition 3.3.4 The sequoidal closed categories W and G are both equipped with a

coalgebraic exponential comonoid.

Proof Follows from Propositions 3.3.1, 3.3.2 and the fact ! is the cofree commutative

comonoid in G and W [51]. The coherence condition wk ◦ (der⊗ id) ◦d = α can be easily

checked.

3.4 The Logic WS!

We next add the exponential operators to WS, with proof rules explicitly based on the

fact that ! N is a final coalgebra. We call this extended system WS!.

3.4.1 Proof System

Formulas of WS!

The formulas of WS! are those of WS extended with exponentials:

P := 0 | ⊥ | POQ | P�Q | P�Q | P�N | ?P

N := 1 | > | N ⊗M | M&N | N�M | N�P | !N

The new exponential operators will be interpreted by the exponential modalities in Sec-

tion 3.3.1.

Proof Rules

Sequents of WS! are again lists of formulas, and the proof rules of WS! are those of WS

extended by the additions in Figure 3-1.

We can interpret the new rules as operations on strategies as follows:



Figure 3-1: Proof rules for WS! — extends Figure 2-2

Core rules:

` N, !N,Γ
P! `!N,Γ

` P,?P,Γ
P? `?P,Γ

Other rules:

`Γ, !M,∆
P!

der `Γ, M,∆
`Γ, !M,∆

P!
con `Γ, !M, !M,∆

` M,P⊥,P
Pana `!M,P

`Γ,P,∆
P?

der `Γ,?P,∆
`Γ,?P,?P,∆

P?
con `Γ,?P,∆

• The P! rule is interpreted by noting that a strategy on the premise corresponds to

a strategy on the conclusion, via the isomorphism !N ∼= N®!N.

• The P? rule is interpreted by noting that a strategy on the premise corresponds to

a strategy on the conclusion, via the isomorphism ?P ∼= P�?P.

• The P!
der and P?

der rules are interpreted by composition with the dereliction map

der : ! M ( M which uses only the first copy on the left.

• The P!
con and P?

con rules are interpreted by composition with the contraction map

con : ! M ( ! M⊗!M which opens a new copy on the left for each copy in either

component on the right.

• The Pana rule is interpreted by using the final coalgebra property of ! N, as described

above.

3.4.2 Embedding ILL in WS!

We have already seen how we can use anamorphisms and contraction to define promo-

tion. This is reflected in the logic, as we can define promotion as a derived rule in WS!.

We can extend Proposition 2.2.1 to full Intuitionistic Linear Logic (over the units ⊥ and

1). The proof rules of ILL are those of IMALL in Figure 2-3 together with the exponential

rules given in Figure 3-2 [72] (!Γ ranges over contexts where every element is of the form

!M).

Figure 3-2: Proof rules for ILL — extends Figure 2-3

Γ, N ` M
Γ, !N ` M

Γ, !N, !N ` M
Γ, !N ` M

Γ` M
Γ, !N ` M

!Γ` N
!Γ`!N



Proposition 3.4.1 For each proof p of M1, . . . , Mn ` N in ILL there is a proof κ(p) in WS!

of ` N, M⊥
1 , . . . , M⊥

n .

Proof We have already described the translation of the exponential-free fragment in

Proposition 2.2.1.

The first three exponential rules correspond to P?
der, P

?
con and P+

wk respectively. We

next give the translation of the right ! rule (promotion). This makes use of the explicit

anamorphisms found in WS!. We first assume Γ consists of a single formula L.

` N,?L⊥ Pid `!L,?L⊥
Pmul ` N, !L,?L⊥,?L⊥

P?
con ` N, !L,?L⊥
Pana `!N,?L⊥

We will later refer to this derived rule as Pprom. If Γ contains more than one formula, we

use the equivalence of !M⊗!N and !(M&N) in WS!.

The first direction p1 `!M⊗!N (!(M&N) is defined as follows:

Pid `!M,?M⊥ Pid `!N,?N⊥
Pmul `!M, !N,?M⊥,?N⊥

P!
con `!M, !M, !N,?M⊥,?N⊥

P!
der ` M, !M, !N,?M⊥,?N⊥
PT
O ` M, !M, !N,?M⊥O?N⊥

PT⊗ ` M, !M⊗!N,?M⊥O?N⊥

Pid `!M,?M⊥ Pid `!N,?N⊥
Pmul `!M, !N,?M⊥,?N⊥

P!
con `!M, !N, !N,?M⊥,?N⊥

Psym `!N, !M, !N,?M⊥,?N⊥
P!

der ` N, !M, !N,?M⊥,?N⊥
PT
O ` N, !M, !N,?M⊥O?N⊥

PT⊗ ` N, !M⊗!N,?M⊥O?N⊥
P& ` M&N, !M⊗!N,?M⊥O?N⊥

Pana `!(M&N),?M⊥O?N⊥

The second direction p2 `!(M&N)(!M⊗!N is given as follows:

Pid ` M, M⊥
PT⊕1 ` M, M⊥⊕N⊥

P?
der ` M,?(M⊥⊕N⊥)

Pprom `!M,?(M⊥⊕N⊥)

Pid ` N, N⊥
PT⊕2 ` N, M⊥⊕N⊥

P?
der ` N,?(M⊥⊕N⊥)

Pprom `!N,?(M⊥⊕N⊥)
Pmul⊗ `!M⊗!N,?(M⊥⊕N⊥),?(M⊥⊕N⊥)

P?
con `!M⊗!N,?(M⊥⊕N⊥)

The interpretations of these maps are the standard copycat morphisms in W .

We can then generalise Pprom to



` M,?P1,?P2, . . . ,?Pn−1,?Pn
...

` M,?(P1 ⊕P2 ⊕ . . .⊕Pn−1),?PnPT
O ` M,?(P1 ⊕P2 ⊕ . . .⊕Pn−1)O?Pn p2

Pcut ` M,?(P1 ⊕P2 ⊕ . . .⊕Pn−1 ⊕Pn)
Pprom `!M,?(P1 ⊕P2 ⊕ . . .⊕Pn−1 ⊕Pn)

...
`!M,?(P1 ⊕P2), . . . ,?Pn−1,?Pn p1

Pcut `!M,?P1O?P2, . . . ,?Pn−1,?PnPT
O `!M,?P1,?P2, . . . ,?Pn−1,?Pn

and interpret the right ! rule of ILL.

3.4.3 Boolean Cell and Stack

We will next show how some infinitary imperative objects can be expressed as proofs in

WS!.

A Boolean Cell

We next give a proof that denotes our Boolean cell strategy cell :!(B&Bi) from Section

3.3.2. We first define cell′ : B(!(B&Bi) giving the behaviour of the cell parametrised by

a given starting value. In particular, we take the anamorphism of a map B( (B&Bi)®B.

This proof is given in Figure 3-3. Its semantics is the history-sensitive Boolean cell

strategy given in [8]. The proof pread corresponds to the map B ( B®B which reads

its argument and propagates it to the next call, and pwrite corresponds to the map B(

Bi®B which ignores its argument and propagates the written value to the next call.

We can use cell (together with the ILL embedding) to give an embedding of recursion-

free Idealized Algol with finitary datatypes into WS!. We will explore this theme in

Chapter 5, also considering other imperative programming constructs that can be rep-

resented by Pana.

A Boolean Stack

We can similarly give a proof denoting our Boolean stack in Section 3.3.2. We first define

a proof !B (!(B&Bi), representing a parametrised stack as above. This is given in

Figure 3-4. An initial stack (proof of !B) can be defined easily using Pprom.



Figure 3-3: Proof Denoting a Boolean Cell

pwrite pread

` ((⊥&⊥)�>)&(⊥� (>⊕>)),⊥� (>⊕>),>® (⊥&⊥)
Pana `!(((⊥&⊥)�>)&(⊥� (>⊕>))),>® (⊥&⊥)

where pwrite is

`>
`>, (>® (⊥&⊥))

P⊕1 `>⊕>, (>® (⊥&⊥))
` (>⊕>)O(>® (⊥&⊥))

`⊥, (>⊕>)O(>® (⊥&⊥))
` (⊥� (>⊕>))� (>® (⊥&⊥))

`>, (⊥� (>⊕>))� (>® (⊥&⊥))
` (>® (⊥� (>⊕>))),>® (⊥&⊥)

` (>® (⊥� (>⊕>)))O(>® (⊥&⊥))
`⊥, (>® (⊥� (>⊕>)))O(>® (⊥&⊥))

`⊥,>,⊥� (>⊕>),>® (⊥&⊥)

`>
`>, (>® (⊥&⊥))

P⊕2 `>⊕>, (>® (⊥&⊥))
` (>⊕>)O(>® (⊥&⊥))

`⊥, (>⊕>)O(>® (⊥&⊥))
` (⊥� (>⊕>))� (>® (⊥&⊥))

`>, (⊥� (>⊕>))� (>® (⊥&⊥))
` (>® (⊥� (>⊕>))),>® (⊥&⊥)

` (>® (⊥� (>⊕>)))O(>® (⊥&⊥))
`⊥, (>® (⊥� (>⊕>)))O(>® (⊥&⊥))

`⊥,>,⊥� (>⊕>),>® (⊥&⊥)
`⊥&⊥,>,⊥� (>⊕>),>® (⊥&⊥)

` (⊥&⊥)�>,⊥� (>⊕>),>® (⊥&⊥)

and pread is

`>P⊕1 `>⊕>
`⊥, (>⊕>)

`>,⊥� (>⊕>)
P⊕1 `>⊕>,⊥� (>⊕>)
`⊥, (>⊕>)® (⊥� (>⊕>))

`>P⊕2 `>⊕>
`⊥, (>⊕>)

`>,⊥� (>⊕>)
P⊕2 `>⊕>,⊥� (>⊕>)
`⊥, (>⊕>)® (⊥� (>⊕>))

`⊥&⊥, (>⊕>)® (⊥� (>⊕>))
`>, (⊥&⊥)� ((>⊕>)® (⊥� (>⊕>)))
`>® (⊥&⊥), (>⊕>)® (⊥� (>⊕>))

` ((>⊕>)® (⊥� (>⊕>)))O(>® (⊥&⊥))
`⊥, ((>⊕>)® (⊥� (>⊕>)))O(>® (⊥&⊥))

`⊥� (>⊕>),⊥� (>⊕>),>® (⊥&⊥)



Figure 3-4: Proof Denoting a Boolean Stack

pwrite

Pid `!(⊥� (>⊕>)),?(>® (⊥&⊥))
P!

con `!(⊥� (>⊕>)), !(⊥� (>⊕>)),?(>® (⊥&⊥))
P!

der `⊥� (>⊕>), !(⊥� (>⊕>)),?(>® (⊥&⊥))
` ((⊥&⊥)�>)&(⊥� (>⊕>)), !(⊥� (>⊕>)),?(>® (⊥&⊥))

Pana `!(((⊥&⊥)�>)&(⊥� (>⊕>))),?(>® (⊥&⊥))

where pwrite is

p1
write p2

write

` (⊥&⊥)�>, !(⊥� (>⊕>)),?(>® (⊥&⊥))

and pi
write is:

Pid `!(⊥� (>⊕>)),?(>® (⊥&⊥))
`>, !(⊥� (>⊕>)),?(>® (⊥&⊥))

P⊕ i `>⊕>, !(⊥� (>⊕>)),?(>® (⊥&⊥))
` (>⊕>)®!(⊥� (>⊕>)),?(>® (⊥&⊥))

` ((>⊕>)®!(⊥� (>⊕>)))O?(>® (⊥&⊥))
`⊥, ((>⊕>)®!(⊥� (>⊕>)))O?(>® (⊥&⊥))
`⊥, (>⊕>), !(⊥� (>⊕>)),?(>® (⊥&⊥))
`⊥� (>⊕>), !(⊥� (>⊕>)),?(>® (⊥&⊥))

`!(⊥� (>⊕>)),?(>® (⊥&⊥))
`>®!(⊥� (>⊕>)),?(>® (⊥&⊥))

` (>®!(⊥� (>⊕>)))O?(>® (⊥&⊥))
`⊥�>, !(⊥� (>⊕>)),?(>® (⊥&⊥))



3.4.4 Embedding LLP in WS!

In Section 2.6 we embedded MALLP inside WS. Full Polarized Linear Logic (LLP) can be

embedded in WS!. LLP extends MALLP with exponential connectives:

P := 1 | 0 | P ⊗Q | P�Q | ↓ N | !N

N := ⊥ | > | MON | M&N | ↑ P | ?P

Remark The presentation of LLP given in [53] omits the linear lifts ↑ and ↓ of MALLP.

We will include them in our presentation of LLP and its embedding, for use in Chapter

5.

We say a negative LLP formula N is reusable (and write reuse(N)) if every occurrence

of ↑ occurs under a ?. If we exclude the linear lifts ↑ and ↓, all negative formulas are

reusable. reuse(Γ−) holds if all formulas in Γ− are reusable. The additional rules of LLP

are given in Figure 3-5.

Figure 3-5: Proof rules for LLP — extends Figure 2-14

`Γ−, N
! reuse(Γ−)`Γ−, !N

`Γ,P
?d `Γ,?P

`Γ, N, N
?c reuse(N)`Γ, N

`Γ?w reuse(N)`Γ, N

We next extend the embedding in Section 2.6 to full LLP. The LLP exponential is

translated to a combination of the corresponding WS exponential and a lift. We set

i(!N)= ({∗},_ 7→!& j∈|i(N)|(⊥� i(N) j)) and i(?P)= ({∗},_ 7→?
⊕

j∈|i(P)|(>® i(P) j)).

First, we show that each WS! formula in the translation of a reusable LLP formula

is equivalent to one with a leading exponential.

Proposition 3.4.2 Suppose N is reusable. Then for any x in |i(N)|, there is a formula Q

with proofs p `!Q⊥, i(N)x and p′ ` i(N)⊥x ,?Q where JpK and Jp′K are inverses.

Proof We proceed by induction on N. If N = ⊥ then i(N)x = 0 and the corresponding

proofs apply:

` 1,?0 ` 1, !1,0
`!1,0

If N => then i(N)x => and the corresponding proofs apply:



`>
`>,?>
`?>

`⊥,?>

`>
`⊥,>

`⊥, !⊥,>
`!⊥,>

If N = MOL then M and L are reusable, and i(N)x = i(M)yOi(L)z for some y ∈ |i(M)|
and z ∈ |i(L)|. By induction, there are formulas Q and P with i(M)y ∼=?P and i(L)z ∼=?Q.

We then use the isomorphism p1 : ! M⊗ ! N ∼= !(M&N) : p2 defined in Proposition 3.4.2.

` i(M)⊥y ,?P ` i(N)⊥z ,?Q
Pmul⊗ ` i(M)⊥y ⊗ i(N)⊥z ,?P,?Q

PT
O ` i(M)⊥y ⊗ i(N)⊥z ,?PO?Q

Pcut(p2) ` i(M)⊥y ⊗ i(N)⊥z ,?(P ⊕Q)

`!P⊥, i(M)y `!Q⊥, i(N)z
Pmul⊗ `!P⊥⊗!Q⊥, i(M)y, i(L)z

PT
O `!P⊥⊗!Q⊥, i(M)yOi(L)z

Pcut(p1) `!(P⊥&Q⊥), i(M)yOi(L)z

Suppose N = M&L and x ∈ |i(N&M)| = |i(M)| ] |i(N)|. Then M and L are reusable.

Suppose that x = in1(y) for y ∈ |i(M)|. Then i(M&L)x = i(M)y. By induction, there exists

Q and proofs ` i(M)⊥y ,Q and `Q⊥, i(M)y as required. The case when x = in2(y) is similar.

If N =?P then we can take Q =⊕
j∈|i(P)|(>® i(P) j) and use the Pid rule in each direc-

tion.

Next, we must extend Proposition 2.6.1 with the exponential case, to extend the trans-

lation of the > rule of MALLP. PT
!N,∗ is defined as follows:

`>
`⊥,>(P−

⊥)∗ `⊥, !& j∈|i(N)|(⊥� i(N) j),∆−,>
P+

wk `⊥, i(N) j, !& j∈|i(N)|(⊥� i(N) j),∆−,>
`⊥� i(N) j, !& j∈|i(N)|(⊥� i(N) j),∆−,> ...

`& j∈|i(N)|(⊥� i(N) j), !& j∈|i(N)|(⊥� i(N) j),∆−,>
`!& j∈|i(N)|(⊥� i(N) j),∆−,>

We next show how the additional LLP proof rules are translated.

• The ! rule: Let Γ− = N1, . . . , Nn and xi ∈ |i(Ni)|. For each j ∈ |i(N)|, i(q,−→xi , j) `
⊥, i(N1)x1 , . . . , i(Nn)xn , i(N) j. We then perform the following derivation r j:

i(q,−→xi ,n)`⊥, i(N1)x1 , . . . , i(Nn)xn , i(N) j
Psym `⊥, i(N) j, i(N1)x1 , . . . , i(Nn)xn

`⊥� i(N) j, i(N1)x1 , . . . , i(Nn)xn

We perform this construction for each j, and using P& we obtain

r `& j∈|i(N)|(⊥� i(N) j), i(N1)x1 , . . . , i(Nn)xn



We then set i(p,−→xi )= (∗, q) where q is:

r `& j∈|i(N)|(⊥� i(N) j), i(N1)x1 , . . . , i(Nn)xn

`& j∈|i(N)|(⊥� i(N) j),?Q1, . . . ,?Qn
Pprom `!& j∈|i(N)|(⊥� i(N) j),?Q1, . . . ,?Qn

`!& j∈|i(N)|(⊥� i(N) j), i(N1)x1 , . . . , i(Nn)xn

Here we use the proofs in Proposition 3.4.2 that show that i(Ni)xi is isomorphic to

?Q i.

• The ?d rule, with p =?d(q): Let Γ= N1, . . . , Nn and xi ∈ |i(Ni)|. Then i(q,−→xi ) = (y, q)

where q ` i(P)y, i(N1)x1 , . . . , i(Nn)xn . Then i(p,−→xi ) is:

q ` i(P)y, i(N1)x1 , . . . , i(Nn)xn

`>, i(P)y, i(N1)x1 , . . . , i(Nn)xn

`>® i(P)y, i(N1)x1 , . . . , i(Nn)xnP⊕ y `⊕
j∈|i(P)|>® i(P) j, i(N1)x1 , . . . , i(Nn)xn

P?
der `?(

⊕
j∈|i(P)|>® i(P) j), i(N1)x1 , . . . , i(Nn)xn

`⊥, i(N1)x1O . . .Oi(Nn)xnO?(
⊕

j∈|i(P)|>® i(P) j)
`⊥, i(N1)x1 , . . . , i(Nn)xn ,?(

⊕
j∈|i(P)|>® i(P) j)

• The ?c rule, with p =?c(q):

If Γ = N1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi , x, x) is a proof of `
⊥, i(N1)x1 , . . . , i(Nn)xn , i(N)x, i(N)x. We can apply Proposition 3.4.2 and use ?-contraction

in WS to yield a proof q′ of `⊥, i(N1)x1 , . . . , i(Nn)xn , i(N)x and we set i(p,−→xi , x)= q′.

If Γ = N1, . . . , Ni,P, Ni+1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi , x, x) =
(y, q′) where q′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(N)x, i(N)x. We can apply Proposition

3.4.2 and use ?-contraction in WS to yield a proof q′′ of

` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(N)x

and we set i(p,−→xi , x)= (y, q′′).

• The ?w rule, with p =?w(q):

If Γ = N1, . . . , Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi ) `⊥, i(N1)x1 , . . . , i(Nn)xn .

We can apply P+
wk in WS to yield a proof q′ of `⊥, i(N1)x1 , . . . , i(Nn)xn , i(N)x and we

set i(p,−→xi , x)= q′.

If Γ = N1, . . . , , Ni,P, Ni+1, . . . Nn and xi ∈ |i(Ni)| and x ∈ |i(N)| then i(q,−→xi ) = (y, q′)
where q′ ` i(P)y, i(N1)x1 , . . . , i(Nn)xn . We can use P+

wk to yield a proof q′′ of

` i(P)y, i(N1)x1 , . . . , i(Nn)xn , i(N)x and we set i(p,−→xi , x)= (y, q′′).

We can hence interpret proofs in LLP as (families of) proofs in WS!.



3.5 Semantics of WS!

Definition A WS!-category is a WS-category with a coalgebraic exponential comonoid.

We will give semantics of WS! in any WS!-category.

Proposition 3.5.1 W and G are WS!-categories.

Proof Follows from Propositions 3.3.4 and 2.3.3.

3.5.1 Semantics of Sequents

We extend the interpretation of formulas and sequents in Section 2.3.3 to WS! by setting

J!NK= !JNK and J?PK= !JPK.

3.5.2 Semantics of Proofs

The interpretations of the new proof rules are given in Figure 3-6. Once again, proofs of

` N,Γ are interpreted by arrows I → JN,ΓK and proofs of ` P,Γ by arrows JP,ΓK→⊥.

3.6 Full Completeness

We will next extend the full completeness result of WS to WS!. We restrict our attention

to the concrete games model. We first show that each bounded winning strategy on a

type object is the denotation of a unique analytic proof.

Definition Let σ be a winning strategy on a (win-)game G. We say σ is bounded if there

is n ∈N such that ∀s ∈σ, |s|6 n.

Note that a bounded winning strategy on a win-game is precisely a bounded total strat-

egy on that game.

Interpretations of proofs in WS are bounded. Winning strategies on games involving

the ! operator are typically not bounded, e.g. there is no bounded winning strategy on

!(⊥�>). However, strategies on e.g. !B ( B that interrogate their arguments only a

finite number of times are bounded.

3.6.1 Reification of Bounded Strategies

Let σ : J` ΓK be a bounded winning strategy on the denotation of a WS! sequent. We

define reify(σ) as an analytic proof of `Γ. This is defined in Figure 3-7.

We can use the measures defined in Proposition 2.4.3 to show that reify terminates.

However, for the first measure, we must use depth(σ) rather than the size of the sequent.



Figure 3-6: Semantics for WS! — extends Figures 2-4, 2-5, 2-6

Core rules:

σ : J` N, !N,ΓK
P! JΓK−(α−1)◦σ : J`!N,ΓK

σ : J` P,?P,ΓK
P?

σ◦ JΓK+(α) : J`?P,ΓK
Other rules:

σ : J` M,P⊥,PK
Pana

ΛI ($Λ−1
I (σ)%) : J`!M,PK

σ : J` P,Γ, !M,∆K
σ◦ J∆K+(der( id) : J` P,Γ, M,∆K

σ : J`!M,∆K
J∆K−(der)◦σ : J` M,∆K

σ : J` P,Γ, !M,∆K
σ◦ J∆K+((d( id)◦pasc−1

( ) : J` P,Γ, !M, !M,∆K
σ : J` N,Γ, !M,∆K

J∆K−(id®der)◦σ : J` N,Γ, M,∆K
σ : J` N,Γ, !M,∆K

J∆K−(pasc◦ (id®d))◦σ : J` N,Γ, !M, !M,∆K
σ : J`!M,∆K

J∆K−(con)◦σ : J`!M, !M,∆K
σ : J` M,Γ,?P,?P,∆K

J∆K−((d( id)◦pasc−1
( )◦σ : J` M,Γ,?P,∆K

σ : J`?P,?P,∆K
σ◦ J∆K+(con) : J`?P,∆K

σ : J`Q,Γ,?P,?P,∆K
σ◦ J∆K+(pasc◦ (id®d)) : J`Q,Γ,?P,∆K

σ : J` P,∆K
σ◦ J∆K+(der) : J`?P,∆K

σ : J`Q,Γ,P,∆K
σ◦ J∆K+(id®der) : J`Q,Γ,?P,∆K

σ : J` M,Γ,P,∆K
J∆K−(der( id)◦σ : J` M,Γ,?P,∆K

• If Γ= ! N,Γ′ then the in the inductive call of reifyΓ, the first measure depth(σ) stays

the same. If N = ⊥ then the second measure tl(Γ) decreases. If N 6= ⊥ then the

second measure stays the same, and the third measure hd(Γ) decreases.

• If Γ= ?P,Γ′ then the in the inductive call of reifyΓ, the first measure depth(σ) stays

the same. If P = > then the second measure tl(Γ) decreases. If N 6= > then the

second measure stays the same, and the third measure hd(Γ) decreases.

3.6.2 Soundness and Uniqueness

We can show that reify(σ) is the unique analytic proof p with JpK=σ.

Proposition 3.6.1 For any bounded winning strategy σ : JΓK, Jreify(σ)K=σ.

Proof We proceed by induction on the termination measure. In the case when the head

formula of Γ is not an exponential, we proceed as in Proposition 2.4.4 using the fact that

W is a complete WS-category. In the other cases:



Figure 3-7: Reification of Strategies for WS! — extends Figure 2-7

reify!N,Γ(σ) = P!(reifyN,!N,Γ(JΓK−(α)◦σ))
reify?P,Γ(σ) = P?(reifyP,?P,Γ(σ◦ JΓK+(α−1)))

• If Γ= ! N,Γ′ then Jreify(σ)K= JP!(reify(JΓK−(α)◦σ))K= JΓK−(α−1)◦Jreify(JΓK−(α)◦σ)K=
JΓK−(α−1)◦ JΓK−(α)◦σ=σ as required.

• If Γ= ?P,Γ′ then Jreify(σ)K= JP?(reify(σ◦JΓK+(α−1)))K= Jreify(σ◦JΓK+(α−1))K◦JΓK+(α)=
σ◦ JΓK+(α−1)◦ JΓK+(α)=σ as required.

Proposition 3.6.2 For any analytic proof p, reify(JpK)= p.

Proof We proceed by induction on p. In the cases when p uses one of the core rules of

WS, we can proceed as in Proposition 2.4.5 since W is a complete WS-category. In the

other cases:

• If p =P!(q) then reify(JpK)= reify(JΓK−(α−1)◦JqK)=P!(reify(JΓK−(α)◦JΓK−(α−1)◦JqK))=
P!(reify(JqK))=P!(q)= p as required.

• If p =P?(q) then reify(JpK)= reify(JqK◦JΓK+(α))=P?(reify(JqK◦JΓK+(α)◦JΓK+(α−1)))=
P?(reify(JqK))=P?(q)= p as required.

Remark Note that the only place we have used the concrete games structure above is

in the termination argument, using the depth of a strategy. The reification procedure

can be defined in any WS!-category that is a complete WS-category. If it can be shown

to terminate in that category, the above propositions show that reify(σ) is the unique

analytic proof p with JpK=σ.

3.7 Proof Normalisation

We have seen that any bounded winning strategy is the denotation of a unique analytic

proof of WS!. We cannot use this to normalise proofs to their analytic form as for WS,

because proofs in WS! do not necessarily denote bounded strategies. We will next show

that our reification procedure can be extended to winning strategies that may be un-

bounded, provided the resulting analytic proofs are allowed to be infinitary — that is,

proofs using the core rules that may be infinitely deep. More precisely, we will show that

total strategies on a type object correspond precisely to the infinitary analytic proofs.

Thus we can normalise any proof of WS! to its infinitary normal form, by taking its se-

mantics and then constructing the corresponding infinitary analytic proof. Two proofs



in WS! are semantically equivalent if and only if they have the same normal form as an

infinitary analytic proof.

Remark Systems such as Intuitionistic Linear Logic have exponentials, and cut elimi-

nation theorems where the normal form is still a finite proof. This raises the question:

why are normal forms of WS! proofs infinitary? We give an informal answer. Proofs in In-

tuitionistic Linear Logic can be given semantics as innocent strategies [10], and any in-

nocent strategy σ : ! N must behave the same in each thread (equationally, σ= (der◦σ)†).

Thus, if there are finitely many innocent strategies on N, there are finitely many inno-

cent strategies on ! N. Proofs in WS! represent history-sensitive strategies, which may

behave differently in each of the ω copies of N in ! N (where behaviour in each thread can

be dependent on behaviour in other threads). For example, a strategy on !B represents

an arbitrary infinite stream of Booleans, which may not even be computable. Thus it

will not be expressible by any standard notion of finite analytic proof.

3.7.1 Infinitary Analytic Proofs

We next give formal definitions of analytic proofs that may be infinitary.

Infinitary Proofs as a Final Coalgebra

Let L be a set. Let TL denote the final coalgebra of the functor X 7→ L× X∗ in Set.

The inhabitants of TL are L-labelled trees of potentially infinite depth. We let α : TL →
L ×T ∗

L describe the arrow part of this final coalgebra: this maps a tree to its label

and sequence of subtrees. Given a natural number n, we define a function Nn : TL →
P (L×T ∗

L ), by induction:

• N0(T)=;
• Nn+1(T)= {α(T)}]⋃

{Nn(T ′) : T ′ ∈π2(α(T))}

We define the set of nodes N(T) to be {Nn(T) : n ∈N}.

Let Prf be the set of (names of) proof rules of WS! and Seq the set of sequents of WS!.

Definition An infinitary analytic proof of WS! is an infinitary proof using only the core

rules of WS!. Formally, this is an element T of I = TPrf×Seq such that for each node

((Px,` Γ), c) ∈ N(T) we have |c| = ar(Px) and if (π2 ◦π1 ◦α)(ci) =`Γi then the following is

a valid core rule of WS!:

`Γ1 . . . `Γ|c|
Px `Γ



We let IΓ denote the set of infinitary analytic proofs of `Γ.

Remark Alternatively, we could formulate the core proof rules as an endofunctor on

SetSeq. The analytic proofs then represent the initial algebra of this functor, and the

infinitary analytic proofs represent the final coalgebra. We chose the above formulation

for simplicity. However, the generated coinductive principle needs refinement.

Let {AΓ : Γ ∈ Seq} be a family of sets indexed by sequents. We next show that we

can construct a family of maps AΓ → IΓ by giving, for each Γ and a ∈ AΓ, a proof rule

that concludes ` Γ from ` Γ1, . . . , ` Γi and for each i an element ai ∈ AΓi . To see

this, let f :
∑
Γ∈Seq AΓ → (Prf ×Seq)× (

∑
Γ∈Seq AΓ)∗ be a function such that for each a,

f (inΓ(a))= ((Px,`Γ), inΓ1(a1) . . . inΓn (an)) where Px has arity n and the following is a valid

core rule in WS!:

`Γ1 . . . `ΓnPx `Γ
Then we can use the final coalgebraic property of I to construct a map

∑
Γ∈Seq AΓ→I :

∑
Γ∈Seq

AΓ
f- (Prf×Seq)× (

∑
Γ∈Seq

AΓ)∗

I

$ f%

?

α
- (Prf×Seq)×I ∗

id×$ f%∗

?

We need to check that for all inΓ(a), $ f%(inΓ(a)) ∈ IΓ. That is, for any n and any

inΓ(a), each element of Nn($ f%(inΓ(a))) specifies a valid instance of a proof rule of

WS! as described above. We proceed by induction on n. If n = 0 this is vacuously

true. If n = m+1 then each node in Nn($ f%(inΓ(a))) is either in Nm($ f%(inΓ(a))) or

is α($ f%(inΓ(a))). In the former case we are done (by induction). In the latter case, we

know that α($ f%(inΓ(a)))= (id×$ f%∗)( f (inΓ(a))) using the diagram above. By require-

ment, this is (id×$ f%∗)((Px,`Γ), inΓ1(a1) . . . inΓn (an)) where

`Γ1 . . . `ΓnPx `Γ
is a valid proof rule. Thus this node is of the form

((Px,`Γ),$ f%(inΓ1(a1)) . . .$ f%(inΓn (an))).

Since α($ f%(inΓi (ai))) = ((id×$ f%∗) ◦ f )(inΓi (ai)) and f (inΓi (ai)) is of the form ((_,`
Γi),_), so is $ f%(inΓi (ai). Thus ((Px,` Γ),$ f%(inΓ1(a1)) . . .$ f%(inΓn (an))) does have the

structure of a valid proof rule of WS!.



Infinitary Proofs as a Limit of Paraproofs

We can consider an alternative approach for presenting our infinitary analytic proofs.

We consider partial proofs, that may give up in the style of [29].

Definition An analytic paraproof of WS! is a proof made up of the core proof rules of

WS!, together with a diamon rule Pε that can prove any sequent.

Note that each analytic proof is also a analytic paraproof. Let CΓ represent the set of

analytic paraproofs of ` Γ. We can introduce an ordering v on this set, generated from

the least congruence with Pε as a bottom element. We can take the completion of CΓ

with respect to ω-chains generating an algebraic cpo DΓ. The maximal elements in this

domain are precisely the infinitary analytic proofs IΓ, and the compact elements are the

analytic paraproofs CΓ.

3.7.2 Semantics of Infinitary Analytic Proofs

We next describe semantics of infinitary analytic proofs via the semantics of analytic

paraproofs.

Semantics of Analytic Paraproofs

We can interpret analytic paraproofs as partial strategies. We interpret paraproofs in G ,

the category of (win) games and strategies. For the rules other than Pε, we use the fact

that G is a WS!-category. We interpret Pε as the strategy {ε} where ε denotes the empty

play on any game. We can hence interpret an analytic paraproof of ` Γ as a strategy on

J`ΓK.
The category G is cpo-enriched, with σ v τ if σ ⊆ τ as a set of plays. The bottom

element is {ε}. Composition, pairing and currying are continuous maps of hom sets.

Proposition 3.7.1 If p and q are analytic paraproofs of `Γ and p v q then JpKv JqK.

Proof A simple induction on q, using the fact that composition, pairing and currying

are monotonic operations. Note that J−K is also strict, as JPεK= {ε}.

Semantics of Infinitary Analytic Proofs

Both DΓ and hom sets of G are algebraic domains: each element is the limit of its com-

pact (finite) approximants. Our monotonic map CΓ → J` ΓK thus extends uniquely to a

continuous map DΓ→ J`ΓK. By construction this agrees with the semantics given above



for analytic paraproofs in DΓ. Given any infinitary analytic proof p if p ↓ is the set of

analytic paraproofs less than p then JpK=⊔
Jp ↓K using the cpo structure in G .

We can show that this really does capture the intended semantics of infinitary ana-

lytic proofs.

Proposition 3.7.2 The equations for the semantics of analytic proofs given in Figures

2-4 and 3-6 hold for infinitary analytic proofs.

Proof We use the fact that the constructs used in the semantics of the core proof rules

are continuous. We proceed by case analysis on the proof rule.

We just give an example. In the case of P⊗, note that JP⊗(p, q)K=⊔
{JrK : r vP⊗(p, q)}=⊔

{JP⊗(p′, q′)K : p′ v p ∧ q′ v q} = ⊔
{JΓK−(dec−1) ◦ dist−1

−,Γ ◦ 〈Jp′K,Jq′K〉 : p′ v p ∧ q′ v q} =
JΓK−(dec−1)◦dist−1

−,Γ ◦ 〈J
⊔

{p′ : p′ v p}K,J
⊔

{q′ : q′ v q}K〉 = JΓK−(dec−1)◦dist−1
−,Γ ◦ 〈JpK,JqK〉 as

required. All other cases are similar.

We next show that the semantics of an infinitary analytic proof is a total strategy.

Totality

We need to show that given p ∈ IΓ, JpK is a total strategy. Note that this is not true of

arbitrary paraproofs in DΓ, nor is it true for infinite derivations in full WS! (for example,

one could repeatedly apply the Psym rules forever).

To show this fact, we first introduce some auxiliary notions.

Definition Let σ : N be a strategy on a negative game. We say that σ is n-total if

whenever s ∈σ∧|s|6 n∧ so ∈ PN ⇒∃p.sop ∈σ.

It is clear that a strategy is total if and only if it is n-total for each n.

Proposition 3.7.3 The following facts hold:

1. If σ is n-total and τ is an isomorphism then τ◦σ is n-total.

2. If σ is n-total and τ is an isomorphism then σ◦τ is n-total.

3. If σ : A⊗B (C is n-total then Λ(σ) is n-total.

4. If σ : A → B and τ : A → C are n-total then 〈σ,τ〉 is also n-total.

5. If σ : A i (B is n-total then σ◦πi : A1 × A2 (B is n-total

6. If σ : A (B is n-total then σ( id : (B ( o)( (A ( o) is (n+2)-total.



Proof 1. Suppose σ : A ( B is n-total and τ : B ( C is an isomorphism. Note that

τ induces an isomorphism of plays fτ : PB ∼= PC. This extends to an isomorphism

of plays fA(τ : PA(B ∼= PA(C. If |s|6 n, s ∈ σ◦τ and so ∈ PA(C then f −1
A(τ

(so) ∈
PA(B. We know that f −1

A(τ
(s) ∈ σ, | f −1

A(τ
(s)|6 n and | f −1

A(τ
(so)| extends | f −1

A(τ
(s)|

by a single O-move. Thus by n-totality of σ, there is a move p such that f −1
A(τ

(so)p ∈
σ. Then fA(τ( f −1

A(τ
(so)p) ∈ τ. This is a play that extends so by a single P-move q.

Thus τ◦σ is n-total.

2. Similar to the previous case.

3. Let s ∈ Λ(σ) with so ∈ PA((B(C) and |s| 6 n. Then so corresponds to a play s′o′

in PA⊗B(C, with s′ ∈σ, as the Λ operation renames indices of moves in a bijective

fashion. Since σ is n-total, there is a response p′ with s′o′p′ ∈σ. Then by applying

the appropriate relabelling we see that this is corresponds to a play sop ∈Λ(σ), as

required.

4. Let s ∈ 〈σ,τ〉 with so ∈ PA(B×C. Each nonempty play in A ( B×C corresponds

either to a play in A ( B or A ( C depending on the first move. Assume wlog so

is a play in A ( B. Then since σ is n-total, so has a response in σ, and hence in

〈σ,τ〉, as required.

5. Let s ∈σ◦πi with so ∈ A1 × A2 ( B and |s|6 n. Then s is also a play in σ : A i ( B

up to retagging, and so a play in A i ( B by the switching condition. Thus by n-

totality of σ, σ provides a response p in A i ( B. Then sop ∈ σ is also in σ◦πi, as

required.

6. Let s ∈ σ( id be such that |s|6 n+2 and so ∈ P(B(o)((A(o). If s = ε then o must

be the initial move, and we know that σ( id provides a response to this move.

Otherwise, one can remove the first two moves of so, to generate a play s′o′ in

PA(B with s′ ∈ σ,|s′| 6 n. By n-totality of σ, there exists p′ with s′o′p′ ∈ σ. By

applying the appropriate relabelling we find a move p such that sop ∈ σ( id, as

required.

Proposition 3.7.4 Given any infinitary analytic proof p of `Γ, JpK is total.

Proof We show that JpK is n-total for each n. We proceed by induction on a compound

measure.

• Define tl+(A,Γ) to be the length of Γ as a list if A => or ∞ otherwise.

• Define hd+(A,Γ) to be |A| if A is positive or ∞ otherwise.

• Define tl−(A,Γ) to be the length of Γ as a list if A =⊥ or ∞ otherwise.

• Define hd−(A,Γ) to be |A| if A is negative or ∞ otherwise.



We proceed by induction on f (n,Γ) = 〈n,tl+(Γ),hd+(Γ),tl−(Γ),hd−(Γ)〉 in the lexicographi-

cal ordering on N×N∪ {∞}×N∪ {∞}×N∪ {∞}×N∪ {∞}. We proceed by case analysis on

p.

• If p =P1 or P> then p is a finite proof, hence JpK is total by semantics of WS.

• If p = P⊗(p1, p2) then by Proposition 3.7.2 we see that JP⊗(p1, q2)K = JΓK−(dec−1)◦
dist−1

−,Γ ◦ 〈Jp1K,Jp2K〉. We know by induction that Jp1K and Jp2K are n-total. The call

to the inductive hypothesis is valid because f (n, (Mi,Γ))< f (n, (M1 ⊗M2,Γ)) — it is

smaller in either the fourth or fifth components, and equal in previous components.

Thus by by Proposition 3.7.3 JP⊗(p, q)K= JpK is n-total.

• If p = PO1(q) then JpK = JqK◦∆+(wk◦ sym) = JqK◦∆+(π1 ◦dec◦ sym) = JqK◦∆+(π1)◦
∆+(dec◦ sym) = JqK◦π1 ◦dist+,∆ ◦∆+(dec◦ sym). By induction (smaller in the second

or third component), JqK is n-total, and so by Proposition 3.7.3 JpK is n-total. The

case of p =PO2(q) is similar.

• The remaining cases work in an entirely analogous way. For P+
⊥ we must use the

fact that currying preserves n-totality. For termination:

– In the case of P⊗, P&, P! the first three measures (n,tl+(Γ),hd+(Γ)) stay the

same and either the fourth measure tl−(Γ) decreases, or the fourth measure

stays the same and the fifth measure hd−(Γ) decreases.

– In the case of PO⊥ , P®
⊥, P−

⊥ the first three measures stay the same and the fourth

measure decreases.

– In the cases of P+
⊥, PO, P⊕, P? the first measure n stays the same and either

the second measure tl+(Γ) decreases, or the second measure stays the same and

the third measure hd+(Γ) decreases.

– In the case of P⊗
>, P�

> , P+
> the first measure stays the same and the second

measure decreases.

– In the case of P−
>, the first measure decreases. In particular, JP−

>(q)K= unit( ◦
(JqK( id). By induction JqK is (n−2)-total, and so JqK( id is n-total, and so

JpK is n-total by Proposition 3.7.3.

Note that there are infinitary analytic proofs that denote strategies that are total, but

not winning. For example, there is an infinitary analytic proof of `⊥,?(>�⊥) given by

P+
⊥(h) where h is the infinitary analytic proof of `?(>�⊥) given by

h =P?(P�(P�
> (P−

>(P�(P+
⊥(h)))))). But there are no winning strategies on this game.



3.7.3 Reification of Total Strategies as Infinitary Analytic Proofs

We next show that any total strategy σ on the denotation of a sequent is the interpreta-

tion of a unique infinitary analytic proof reify(σ).

We first define reify for winning strategies. We have seen that we can construct a

family of maps AΓ→IΓ by giving, for each Γ and a ∈ AΓ, a proof rule that concludes `Γ
from `Γ1, . . . , `Γi and for each i an element ai ∈ AΓi .

∑
Γ∈Seq

AΓ
f- (Prf×Seq)× (

∑
Γ∈Seq

AΓ)∗

I

$ f%

?

α
- (Prf×Seq)×I ∗

id×$ f%∗

?

Note that our reification function reify defined in Figure 3-7 is exactly of this shape.

In this case AΓ = WinΓ, the set of winning strategies on JΓK. The function specifies,

for each strategy, the root-level proof rule and the derived strategies that are given as

input to reify coinductively. In the case that σ is bounded, we have seen that the process

terminates and reify(σ) is a finite proof.

In fact, we note that this family of maps are still well defined if AΓ is the set of total

strategies on J`ΓK.

Proposition 3.7.5 reifyΓ is well defined for total strategies on J`ΓK.

Proof Our reification procedure uses the fact that W is a complete WS!-category. We

cannot construct a category of unbounded games and total strategies, as composition is

not well-defined in general. However:

• The composition of a total strategy and an isomorphism is a total strategy.

• The composition of a total strategy and a projection is a total strategy.

• The completeness axioms in Definition 2.4.3 are satisfied:

– There are no total strategies on ⊥.

– The map d sending pairs of total strategies on (M (⊥, N (⊥) to total strate-

gies on M×N (⊥ is an isomorphism.

– The map _(⊥ sending total strategies on M to total strategies on (M (⊥)(

⊥ is an isomorphism.

Thus (looking at each case) we see that reifyΓ is well-defined on total strategies. In

particular, the procedure provides, for each total strategy on Γ, a proof rule Px concluding



Γ from `Γ1, . . . ,`Γn and total strategies on each J`ΓiK. We write this map as reifΓ.

∑
Γ∈Seq

TotΓ
reif- (Prf×Seq)× (

∑
Γ∈Seq

TotΓ)∗

I

reify=$reif%
?

α
- (Prf×Seq)×I ∗

id× reify∗

?

Thus we can take the anamorphism of this map yielding a map from total strategies

on Γ to IΓ, as required.

Propositions 3.6.1 and 3.6.2 ensure that in the case that σ is bounded, reify(σ) is the

unique analytic proof whose semantics is σ. We next wish to give the analogous result

for our infinitary version of reify.

3.7.4 Soundness and Uniqueness

We can show that given any winning strategy σ, reify(σ) is the unique infinitary analytic

proof p such that Jreify(p)K=σ.

For soundness, we first introduce some auxiliary notions.

Definition Let σ and τ be strategies on A. We say that σ =n τ if a) each play in σ of

length at most n is in τ and b) each play in τ of length at most n is in σ.

It is clear that =n is an equivalence relation, and σ= τ if and only if σ=n τ for each n ∈N.

Proposition 3.7.6 1. If σ=n τ and ρ is an isomorphism then σ◦ρ =n τ◦ρ.

2. If σ=n τ and ρ is an isomorphism then ρ ◦σ=n ρ ◦τ.

3. If σ=n τ and ρ =n δ then 〈σ,ρ〉 =n 〈τ,δ〉.
4. If σ=n τ then Λ(σ)=n Λ(τ).

5. If σ=n τ then σ◦πi =n τ◦πi.

6. If σ=n τ then σ( id=n+2 τ( id.

Proof Similar to Proposition 3.7.3, noting that plays in the left (resp. right) hand side

of the conclusion equation have corresponding plays in the left (resp. right) hand side of

the hypothesis equation.

Proposition 3.7.7 Given any total strategy σ on J`ΓK, we have Jreify(σ)K=σ.



Proof We show that for each n, Jreify(σ)K =n σ. The structure of the induction follows

that of Proposition 3.7.4, lexicographically on 〈n,tl+(Γ),hd+(Γ),tl−(Γ),hd−(Γ)〉. In each

particular case, the reasoning follows the proofs of Proposition 2.4.4 and 3.6.1 using =n

in the inductive hypothesis rather than =, and propagating this to the main equation

using Proposition 3.7.6. In the case of Γ =>, N we use the inductive hypothesis with a

smaller n, using the final clause in Proposition 3.7.6.

Proposition 3.7.8 Given any infinitary analytic proof p, reify(JpK)= p.

Proof Since id=$α%, we know that id is the unique morphism f such that:

IΓ
α- (Prf×Seq)×I ∗

IΓ

f

? α- (Prf×Seq)×I ∗

id× f ∗

?

Thus to show that reify ◦ J−K = id it is sufficient to show that α ◦ reify ◦ J−K = id×
(reify ◦ J−K)∗ ◦α, i.e. that for each infinitary analytic proof p we have α(reify(JpK)) =
(id× (reify◦ J−K)∗)(α(p)).

• For binary rules Px we must show that reify(JPx(p1, p2)K)=Px(reify(Jp1K),reify(Jp2K)).

• For unary rules Px we must show that reify(JPx(p))K=Px(reify(JpK))

• For nullary rules Px we must show that reify(JPxK)=Px.

For each proof rule, we have already shown this in the proof of Proposition 2.4.5 or

Proposition 3.6.2. Proposition 3.7.2 ensures that the proof applies in this setting.

3.7.5 Full Completeness and Normalisation

We have thus shown:

Theorem 3.7.9 Each total strategy σ on J` ΓK is the denotation of a unique infinitary

analytic proof reify(σ).

We hence have a bijection between infinitary analytic proofs of a formula, and total

strategies on the denotation of that formula, via the semantics. Since any proof in WS!

can be given semantics as a winning strategy, and winning strategies are total, we may

reify the semantics of a WS! proof to generate its infinitary normal form reify(JpK).

Theorem 3.7.10 For each WS! proof p, there is a unique infinitary analytic proof q such

that JpK= JqK.



Proof Let q = reify(JpK). Then JqK = Jreify(JpK)K = JpK by Proposition 3.7.7. If q′ is an

infinitary analytic proof with Jq′K= JpK then Jq′K= JqK and so reify(Jq′K) = reify(JqK) and

Proposition 3.7.8 ensures that q′ = q.

While infinitary analytic proofs may denote strategies that are not winning, any infini-

tary analytic proof generated as a result of the above normalisation denotes a winning

strategy. The above result also ensures that proofs p1 and p2 in WS! denote the same

strategy if and only if their normal forms (as infinitary analytic proofs) are identical.

3.8 Cut Elimination for Analytic Proofs

We can extend our syntactic cut elimination procedure of Section 2.5.1 to WS!. This

maps (finite) analytic proofs of ` A,Γ, N⊥ and ` N,P to an analytic proof of ` A,Γ,P.

3.8.1 Cut Elimination Procedure

In Figure 3-8, we extend the syntactic cut elimination procedure to WS!.

Figure 3-8: Cut Elimination for WS! — extends Figures 2-12, 2-13, 2-10, 2-11

A Γ cut :` A,Γ, N⊥×` N,P → ` A,Γ,P
!M cut(P!(y, g)) = P!(cut(y, g))
?P cut(P?(y, g)) = P?(cut(y, g))

Q Γ cut2 :`Q,Γ, N⊥×`Q⊥,Γ⊥,P → ` N⊥OP
?_ cut2(P?(y),P!(g)) = cut2(y, g)

wkP (P!(p)) = P!(wkP (p)) wkP (P?(p)) = P?(wkP (p))
rem0(P!(p)) = P!(rem0(p)) wkP (P?(p)) = P?(rem0(p))

3.8.2 Soundness

We can show that this elimination procedure is sound with respect to any WS!-category.

Proposition 3.8.1 In any WS!-category, if p1 is a proof of ` A,Γ, N⊥ and p2 is a proof

of ` N,R then Jcut(p1, p2)K= JPcut(p1, p2)K.

The proof is an easy extension to Propositions 2.5.5, 2.5.4 and 2.5.2. The cases for the

new rules follow precisely the same pattern as other cases whose interpretation is an

isomorphism, e.g. P®
⊥.

This concludes our treatment of the sequoidal exponential. In the next chapter, we

will extend WS! to a first-order logic.



Chapter 4

Atoms and Quantifiers

We have seen that WS! has expressive computational power. But from a logical perspec-

tive, it is somewhat limited: any proposition must ultimately be composed of units and

connectives. In this chapter we introduce atoms, predicates, quantifiers and equality into

our logic. Formulas are interpreted as a family of games indexed by first-order models,

and proofs as families of strategies that must behave in a uniform manner.

We next introduce WS1, adding atoms and quantifiers to our logic, significantly in-

creasing its expressive power. Semantically, formulas represent families of games, in-

dexed over models: a (negative) atom αmay either be true (in which case it is interpreted

by 1 and has a total strategy) or false (in which case it is interpreted by ⊥ and has no

winning strategy). A proof of a formula denotes a winning strategy that works regard-

less of the truth values of the atoms: a family of winning strategies that behave in a

uniform manner.

The atoms themselves are predicates applied to variables, and formulas are inter-

preted with respect to a given first-order model. Our logic has first-order quantifiers ∀
and ∃. In the game denoted ∀x.N(x), Opponent specifies an element a in the model and

play proceeds in N(a). Thus, a winning strategy on ∀x.N(x) must provide a winning

strategy on N(a) for each a in the model.

We will first show how atoms, equality and quantifiers can be accommodated in the

logic WS. The treatment of atoms and equalities are non-standard, chosen so that we

can extend the full completeness results of previous chapters. We give motivation for

these rules based on their (informal) semantics: formulas as families of games (indexed

over first-order structures) and proofs as families of strategies upon them. We show how

first-order Intuitionistic Linear Logic can be embedded, and identify formulas which are

not provable in Intuitionistic Linear Logic but are provable in WS1, including a medial



rule which Blass noticed has a (uniform) winning strategy but no proof in ILL [14].

We then formalise the semantics of WS1. Proofs in WS1 denote strategies which are

uniform — the family of strategies behaves (in some sense) in the same manner regard-

less of the underlying model. We formalise this notion using lax natural transformations:

a formula is represented as a functor from the category of first-order structures to a cate-

gory of games, and proofs are represented as lax natural transformations between these

functors. To reuse the semantics constructed in previous chapters, we construct a WS!-

category of such functors and lax natural transformations. To interpret the quantifiers

we exhibit an adjunction and use standard techniques.

We will then show full completeness: each finitary uniform winning strategy is the

denotation of a unique analytic proof. To do this, we must show some strong properties

of uniform winning strategies with respect to existential quantification and disjunction.

Infinitary uniform total strategies correspond to infinitary analytic proofs, and so once

again we can normalise proofs to their unique analytic form.

Finally, we show how the syntactic cut elimination procedure can be extended to

WS1.

4.1 The Logic WS1

4.1.1 Syntax and Informal Semantics

Formulas of WS1

Our syntax and semantics are given with respect to a particular first-order language.

Definition A (polarized) first-order language consists of:

• A collection of complementary pairs of predicate symbols φ (negative) and φ (posi-

tive), each with an arity in N such that ar(φ) = ar(φ). This must include the binary

symbol = (negative), and we write 6= for its complement

• A collection of function symbols, each with an arity.

We fix a set of variables V . Given a first-order language L , we define the set of terms

to be the set freely generated by the variables and the function symbols. The formulas

of WS1 are defined as follows:

M, N := 1 | ⊥ | φ(−→s ) | M⊗N | M�N | N�P |
∀x.N | M&N | !N

P, Q := 0 | > | φ(−→s ) | POQ | P�Q | P�N |
∃x.P | P ⊕Q | ?P



Here s ranges over terms, x over variables, and φ(−→s ) over n-ary predicates φ applied to

a tuple of terms −→s = (s1, . . . , sn). Equality and inequality are special cases of atoms.

The involutive negation operation (_)⊥ sends negative formulas to positive ones and

vice versa by exchanging each atom, unit or connective for its dual — i.e. 1 for 0, ⊥ for

>, φ(−→s ) for φ(−→s ), ⊗ for O, � for �, ∀ for ∃, & for ⊕ and ! for ?.

Interpretation of Formulas

Definition An L -structure is a set |L| together with an interpretation map IL sending:

• each predicate symbol φ (with arity n) to a function IL(φ) : |L|n → {tt,ff} such that

IL(φ)(−→a ) 6= IL(φ)(−→a ) for all ~a and IL(=)(a,b)= tt if and only if a = b

• each function symbol f (with arity n) to a function IL( f ) : |L|n →|L|.
If X ⊆ V an L -model over X is a pair (L,v) where L is an L -structure and v : X → |L|
a valuation function. If (L,v) is an L -model over X and s a term with free variables

in X , we can define inductively I(L,v)(s) ∈ |L|. If φ(s1, . . . , sn) is an atomic formula we

write (L,v) |= φ(s1, . . . , sn) if IL(φ)(I(L,v)(s1), . . . , I(L,v)(sn)) = tt, and say that φ(s1, . . . , sn)

is satisfied in (L,v).

Given an L -model (L,v) over V we interpret positive and negative formulas as

games:

• Positive atoms which are satisfied in (L,v) are interpreted as the game > with a

single (Player) move; positive atoms which are not satisfied are interpreted as the

game 0 with no moves.

• Negative atoms which are satisfied in (L,v) are interpreted as the empty game 1,

whilst negative atoms which are not satisfied are interpreted as the game ⊥ with

single Opponent move.

• In ∀x.N(x), dialogues are played in N(a) for some value a ∈ |L| chosen by Opponent.

• In ∃x.P(x), dialogues are played in P(a) for some value a ∈ |L| chosen by Player.

We see that the game φ(−→s ) has a winning strategy if (L,v) |= φ(−→s ) and φ(−→s ) has a

winning strategy if (L,v) |=φ(−→s ).

Proof Rules

With this interpretation in mind, we can define proof rules for WS1. A sequent of WS1 is

of the form X ;Θ`Γwhere X ⊆ V , Θ is a set of atomic formulas and Γ is a nonempty list of

formulas such that FV (Θ,Γ)⊆ X . We must specify X explicitly due to the strength of our

correspondence between syntax and semantics. For convenience, we assume all bound



Figure 4-1: Proof rules for WS1 — extends Figure 3-1

Core rules:

X ;Θ,φ(−→s )`⊥,Γ
Pat−

X ;Θ`φ(−→s ),Γ
X ;Θ,φ(−→s )`>,Γ

Pat+
X ;Θ,φ(−→s )`φ(−→x ),Γ

(X ;Θ`Γ)[ z
x , z

y ] X ;Θ, x 6= y`Γ
Px,y,z

ma X ;Θ`Γ
P 6= X ;Θ, x 6= x `Γ

X ] {x};Θ` N,Γ
P∀ x 6∈ FV (Θ,Γ)

X ;Θ`∀x.N,Γ
X ;Θ` P[s/x],Γ

Ps
∃ FV (s)⊆ XX ;Θ`∃x.P,Γ

Other rules:

X ;Θ`Γ,∀x.N,∆
PT
∀ FV (s)⊆ XX ;Θ`Γ, N[s/x],∆

X ;Θ`Γ,P[s/x],∆
PT
∃ FV (s)⊆ XX ;Θ`Γ,∃x.P,∆

X ;Θ, s 6= t `Γ
Pfneq X ;Θ, f (s) 6= f (t)`Γ

variables are distinct, and distinct from any free variables (perhaps achieved using an

initial α-conversion). We can interpret each sequent as a family of games, indexed over

Θ-satisfying L -models over X .

We assume a notion of capture-avoiding substitution, using the usual notation N[s/x]

to mean the formula N with free occurrences of x replaced for s. This can be extended

to substitution on the X ;Θ component. The proof rules associated to our new operators

are defined in Figure 4-1. We include all of the rules of WS! with the X ;Θ contexts

propagated additively (to be precise, we require that the X ;Θ context of the conclusion

is the same as in each of the premises).

We next informally describe interpretation of the core rules.

• Pat−: φ(−→s ),Γ, is interpreted by 1,Γ if (L,v) |= φ(−→s ) or ⊥,Γ if (L,v) 6|= φ(−→s ). In the

former case, there are no moves to respond to, so we only need to consider the case

when (L,v) |=φ(−→s ), which is given by the premise.

• Pat+: For each Θ,φ(−→s )-satisfying L -model (L,v), the premise yields a strategy on

>,Γ(L,v)=φ(−→s ),Γ(L,v), as required.

• P∀: To give a strategy on ∀x.N,Γ(L,v) for each Θ-satisfying L -model over X (L,v),

we must give a strategy on N,Γ(L,v) for each choice of x — that is, a family of

strategies on the set of Θ-satisfying L -models over X ] {x}.

• Ps
∃: To give a strategy on ∃x.P,Γ(L,v) we must choose a value a for x and give a

strategy on P[a/x],Γ(L,v). By setting a = v(s), we may use the interpretation of the

premise at (L,v).



• To interpret P 6=, we use the empty family of strategies, since there are noΘ-satisfying

L -models if Θ contains x 6= x.

• To interpret Px,y,z
ma , we note that the collection of Θ-satisfying L -models can be

decomposed into those where x and y are identified (the left-hand premise) and

those where they are distinct (the right-hand premise).

• To interpret Pfneq we use the fact that all models satisfying f (s) 6= f (t) also satisfy

s 6= t.

We will present the formal semantics in due course. Strategies will be interpreted as

uniform families, which must (in some sense) behave in the same manner across all

components.

4.1.2 Embedding of FOILL

We can embed first-order Intuitionistic Linear Logic in WS1. This logic is defined by

extending ILL with atoms φ(s) and quantifiers together with the rules given in Figure

4-2. Our logic WS1 allows the empty domain asa model and so we must consider a

formulation of first order intuitionistic logic that admits the empty domain (so-called

free logic, considered in [33]) using explicit variable sets.

Figure 4-2: Proof rules for FOILL — extends Figure 3-2

X ] {x};Γ` M
x 6∈ FV (Γ)X ;Γ`∀x.M

X ;Γ, M[s/x]` N
FV (s)⊆ XX ;Γ,∀x.M ` N

Proposition 4.1.1 For any proof p of X ; M1, . . . , Mn ` N in FOILL there is a proof κ(p)

in WS! of X ;` N, M⊥
1 , . . . , M⊥

n .

Proof The right-∀ rule corresponds to P∀ and the left-∀ rule corresponds to PT
∃ .

Equality

We demonstrate how the rules for equality can be used to derive reflexivity, symmetry

and transitivity.

Reflexivity x = x:

P 6= x 6= x `⊥
Pat− ` x = x



Symmetry y= x( x = y:

P 6= w 6= w `⊥,w 6= w
` w = w,w 6= w

y 6= x, x 6= y`>
y 6= x, x 6= y` y 6= x

y 6= x, x 6= y`⊥, y 6= x
y 6= x ` x = y, y 6= x

Py,x,w
ma ` x = y, y 6= x

Transitivity x = y⊗ y= z ( x = z:

x 6= w `>
x 6= w `>,w 6= w

x 6= w ` x 6= w,w 6= w
x 6= w ` x 6= wOw 6= w

x 6= y, y 6= z `>
x 6= y, y 6= z `>, x 6= y

x 6= y, y 6= z ` y 6= z, x 6= y
x 6= y, y 6= z ` x 6= yOy 6= z

Py,z,w
ma x 6= z ` x 6= yOy 6= z

x 6= z `⊥, x 6= yOy 6= z
x 6= z `⊥, x 6= y, y 6= z
` x = z, x 6= y, y 6= z

4.1.3 New Provable Formulas

In Section 2.2.3 we saw that the embedding of Intuitionistic Linear Logic into WS is

not full: there are proofs that are not in the image of this translation. We can now

strengthen this, by giving formulas that are not provable in Intuitionistic Linear Logic

but are provable in WS1.

Memoization

The formula φex = (φ&(φ( ⊥)) ( ⊥ corresponds to an “additive excluded middle” in

(negative) ILL, and is not provable. This formula is not provable in WS1 either. However,

consider the formula φex (φex⊗φex. This is not provable in ILL but it is provable in WS1

(as φex⊗φex�φ⊥
ex). While Player can only access the input φex once in the corresponding

game, he can ‘remember’ whether φ was true or false, to give a winning history-sensitive

(uniform) strategy. This proof is given by P⊗(p, p) where p is as follows:



p1

φ`>
φ`φ
φ`⊥,φ

φ`⊥,⊥� (φ⊕ (>®φ)),φ

`φ,⊥� (φ⊕ (>®φ)),φ

φ`>
φ`φ
φ`⊥,φ

φ`⊥,φ,φ

`φ,φ,φ

φ`>
φ`φ
φ`⊥,φ

φ`⊥,φ,φ

`φ,φ,φ

`φ⊗φ,φ

`>,φ,φ,φ

`>®φ,φ,φ

`φ⊕ (>®φ),φ,φ

`⊥, (φ⊕ (>®φ)),φ,φ

`⊥� (φ⊕ (>®φ)),φ,φ

`φ⊗ (⊥� (φ⊕ (>®φ)),φ

` (φ⊗ (⊥� (φ⊕ (>®φ)))�φ

`>,φ, (⊥� (φ⊕ (>®φ)),φ

`>®φ, (⊥� (φ⊕ (>®φ)),φ

`φ⊕ (>®φ), (⊥� (φ⊕ (>®φ)),φ

`φO((φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

`⊥,φ, (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

`⊥�φ, (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

` (φ&(⊥�φ)), (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

` (φ&(⊥�φ))� ((φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ))))

`>, (φ&(⊥�φ)), (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

`>® (φ&(⊥�φ)), (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

` (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))O(>® (φ&(⊥�φ)))

`⊥, (φ⊕ (>®φ)),⊥� (φ⊕ (>®φ)),>® (φ&(⊥�φ))

`⊥� (φ⊕ (>®φ)),⊥� (φ⊕ (>®φ)),>® (φ&(⊥�φ))

where p1 is:

φ`>
φ`φ

φ`φ⊕ (>®φ)

φ`⊥,φ⊕ (>®φ)

φ`>,⊥� (φ⊕ (>®φ))

φ`φ,⊥� (φ⊕ (>®φ))

φ`φ⊕ (>®φ),⊥� (φ⊕ (>®φ))

φ`⊥, (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))

`φ, (φ⊕ (>®φ))® (⊥� (φ⊕ (>®φ)))



This example can be extended to the exponentials: while φex (!φex is not provable in

ILL, its translation is provable in WS1 (it is simply Pana(p)).

Remark Note that φ ( φ⊗φ is also provable in WS1 but not ILL — but this is for

less interesting reasons, as it only makes use of the fact that atoms are interpreted as

one-move games and local alternation.

Medial Rule

In Section 2.2.3 we described a family of formulas

((A⊗B (⊥)⊗ (C⊗D (⊥)(⊥)(

((A (⊥)⊗ (C (⊥)(⊥)⊗ ((B (⊥)⊗ (D (⊥)(⊥)

that are not provable in ILL but are provable in WS1. We can now use negative atoms to

formalise this.

Proposition 4.1.2 Let α,β,γ,δ be negative (nullary) atoms. Then ` ((α⊗β(⊥)⊗ (γ⊗
δ( ⊥) ( ⊥) ( ((α( ⊥)⊗ (γ( ⊥) ( ⊥)⊗ ((β( ⊥)⊗ (δ( ⊥) ( ⊥) is not provable in

ILL but it is provable in WS1.

As noted in [14], this formula is not provable in ILL. We can use the cut-elimination

theorem of MLL to perform an exhaustive proof search on this sequent and find that

it does not lead to a proof. Alternatively, we see in [6] that multiplicative sequents of

Intuitionistic Linear Logic can be represented as uniform history-free strategies on the

underlying game, and an exhaustive search shows that there are no such strategies on

this game.

However, there is an evident uniform history-sensitive strategy. For example, if Op-

ponent first chooses the left hand component in the output and the right hand component

in the input, Player can choose to play copycat between the copies of γ, and so on. There

is a proof in WS1 denoting this strategy. A branch of the proof is given below. The use of

the P⊗ demonstrates where the proof branches; there are four branches corresponding

to the two uses of P⊗.



α,γ`>
α,γ`>,δ

α,γ` γ,δ

α,γ` γOδ
α,γ`⊥, (⊥� (>®β)O(>®δ)),γOδ
α` γ, (⊥� (>®β)O(>®δ)),γOδ
α`>,γ, (⊥� (>®β)O(>®δ)),γOδ

α` (>®γ), (⊥� (>®β)O(>®δ)),γOδ
α` (>®γ)® (⊥� (>®β)O(>®δ)),γOδ
α`⊥,γOδ, (>®γ)® (⊥� (>®β)O(>®δ))

α` (⊥�γOδ), (>®γ)® (⊥� (>®β)O(>®δ))

α`>,β, (⊥�γOδ), (>®γ)® (⊥� (>®β)O(>®δ))

α`α,β, (⊥�γOδ), (>®γ)® (⊥� (>®β)O(>®δ))
PO1

α`αOβ, (⊥�γOδ), (>®γ)® (⊥� (>®β)O(>®δ))

α`αOβ® (⊥�γOδ), (>®γ)® (⊥� (>®β)O(>®δ))

α`⊥,>®γ, (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)

`α,>®γ, (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)

`>,α,>®γ, (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)

`>®α,>®γ, (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)
PO1 ` (>®α)O(>®γ), (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)

` (>®α)O(>®γ)® (⊥� (>®β)O(>®δ)),αOβ® (⊥�γOδ)

`⊥,αOβ, (⊥�γOδ), (>®α)O(>®γ)® (⊥� (>®β)O(>®δ))

`⊥�αOβ, (⊥�γOδ), (>®α)O(>®γ)® (⊥� (>®β)O(>®δ))
...

P⊗ ` (⊥�αOβ)⊗ (⊥�γOδ), (>®α)O(>®γ)® (⊥� (>®β)O(>®δ))

`>, ((⊥�αOβ)⊗ (⊥�γOδ)), (>®α)O(>®γ)® (⊥� (>®β)O(>®δ))

`>® ((⊥�αOβ)⊗ (⊥�γOδ)), (>®α)O(>®γ)® (⊥� (>®β)O(>®δ))

`⊥, (>®α)O(>®γ), (⊥� (>®β)O(>®δ)),>® ((⊥�αOβ)⊗ (⊥�γOδ))

` (⊥� (>®α)O(>®γ)), (⊥� (>®β)O(>®δ)),>® ((⊥�αOβ)⊗ (⊥�γOδ))
...

P⊗ ` (⊥� (>®α)O(>®γ))⊗ (⊥� (>®β)O(>®δ)),>® ((⊥�αOβ)⊗ (⊥�γOδ))

Here is another formula that is provable in WS1 but not in ILL:

[α⊗ (γ&δ)]&[β⊗ (γ&δ)]&[(α&β)⊗γ]&[(α&β)⊗δ]( (α&β)⊗ (γ&δ)

The derivation in WS was given in Section 2.2.3, and can be specialised to axioms.



4.1.4 Imperative Objects

We have already represented imperative objects in our logic; we next show how the first-

order structure enriches these ideas.

Data-Independent Programming

In Section 3.4.3 we used the exponential in WS1 to represent Boolean cells and stacks.

We can use our quantifiers to represent data-independent cells and stacks, where the

underlying ground type at a given L -structure L is |L|. As a formula/game, this is

represented by V = ⊥� ∃x.> (a dialogue in this game consists of Opponent playing a

question move q and Player responding with an element of |L|).
Let Vi=∀x.⊥�>. We next give the proof for a data-independent stack, parametrised

by a starting stack !V(!(V&Vi).

Pid `!(⊥�∃x.>),?(>®∀x.⊥)
P!

con `!(⊥�∃x.>), !(⊥�∃x.>),?(>®∀x.⊥)
P!

der `⊥�∃x.>, !(⊥�∃x.>),?(>®∀x.⊥)

Pid {x};`!(⊥�∃x.>),?(>®∀x.⊥)
{x};`>, !(⊥�∃x.>),?(>®∀x.⊥)

Px
∃ {x};`∃x.>, !(⊥�∃x.>),?(>®∀x.⊥)

{x};`⊥,∃x.>, !(⊥�∃x.>),?(>®∀x.⊥)
{x};`⊥�∃x.>, !(⊥�∃x.>),?(>®∀x.⊥)

{x};`!(⊥�∃x.>),?(>®∀x.⊥)
{x};`>, !(⊥�∃x.>),?(>®∀x.⊥)

{x};`⊥,>, !(⊥�∃x.>),?(>®∀x.⊥)
`∀x.⊥,>, !(⊥�∃x.>),?(>®∀x.⊥)
`∀x.⊥�>, !(⊥�∃x.>),?(>®∀x.⊥)

` (⊥�∃x.>)&(∀x.⊥�>), !(⊥�∃x.>),?(>®∀x.⊥)
Pana `!((⊥�∃x.>)&(∀x.⊥�>)),?(>®∀x.⊥)

Good Variable

In Section 3.4.3 we represented a Boolean reference cell in WS1 on the formula !(B&Bi).
However, there are other proofs of this formula that do not behave like a standard ref-

erence cell: for example, the read method may always return tt regardless of what was

written. This is a bad variable [8]. We can use uniformity of the semantics to define

formulas for which all proofs denote good variables, albeit variables that can only be

written to once.

The formula worm = Bi®!B represents a Boolean variable which can be written

once, then read many times. One proof/strategy of this formula will be a valid Boolean

cell: if Opponent plays inputX then Player responds with ok, if Opponent then tries to

read the cell q, then Player responds with X. But there are also bad variables.



To exclude such behaviour, we can replace the input/output moves with atoms. Define

B′ =⊥� (φ⊕ψ) and Bi′ = (φ&ψ)�>, with worm′ =Bi′®!B′. If φ and ψ are assigned ff,

then this denotes the same dialogue as worm. However, the denotation of any proof

of worm′ at such a model must be the good variable strategy. The rule for atoms (and

semantically, uniformity of strategies) ensures that moves in φ must be played before φ,

and ψ before ψ. Resultantly, Player can only respond with a particular Boolean in the

read component if it has previously been given as an input in the write component. A

proof of this formula is given below.

φ`>
φ`φ

P⊕1
φ`φ⊕ψ
φ`⊥,φ⊕ψ
φ`⊥�φ⊕ψ

Pprom
φ`!(⊥�φ⊕ψ)

φ`>, !(⊥�φ⊕ψ)

φ`⊥,>, !(⊥�φ⊕ψ)

`φ,>, !(⊥�φ⊕ψ)

ψ`>
ψ`ψ

P⊕2
ψ`φ⊕ψ
ψ`⊥,φ⊕ψ
ψ`⊥�φ⊕ψ

Pprom
ψ`!(⊥�φ⊕ψ)

ψ`>, !(⊥�φ⊕ψ)

ψ`⊥,>, !(⊥�φ⊕ψ)

`ψ,>, !(⊥�φ⊕ψ)

` (φ&ψ),>, !(⊥�φ⊕ψ)

` ((φ&ψ)�>)®!(⊥�φ⊕ψ)

We can consider a further example: an object with two methods, a switch procedure

and a read method that returns a Boolean, denoted by the formula !((⊥�>)&B). We can

refine this formula to only allow strategies satisfying the following property: if the read

method returns true, then the switch has previously been invoked. The appropriate

formula is (φ�>)⊗ (⊥� (φ⊕>)). We cannot describe a property that requires that the

read method returns true just when the switch has been invoked, since the only kind

of specifications we can express in this way are of the form ‘if Player plays move X ,

Opponent has previously played move Y ’. It is for this reason that the good variable

example does not scale to Boolean cells that admit multiple write operations.

Refinements and Specifications

The formulas available in WS1 allow us to specify the behaviour of a program in more

detail than its programming language type. For example, functions V ( V in context

X ;Θ are represented as proofs of X ;Θ`V,V⊥. We can consider formulas that represent

a subgame of the semantics of this sequent. For example, we can consider Id=⊥� (>®
∀y.(⊥�∃x.y= x)) and a total strategy (or proof) representing the embedding Id( (V(



V). The formula Id represents a type of identity maps on V — it is in some sense a form

of first-order dependent type. We can view the formula Id as a specification on V(V —

a program satisfies it if it factors through the embedding. In Chapter 5 we will explore

these ideas further.

4.2 Semantics of WS1

We next give formal semantics to proofs in WS1.

4.2.1 Uniform Strategies

We have seen that a sequent X ;Θ ` Γ of WS1 can be interpreted as a family of games,

indexed over Θ-satisfying L -models over X . We interpret a proof of X ;Θ`Γ as a family

of strategies on the appropriate family of games. However, the strategies that are the

interpretation of a proof are uniform in behaviour.

For example, the family denoted by >® (φ�>) has games of the following form:

q

p

a

Here we represent the forest of plays directly. The moves in dotted circles are only

available if (L,v) |= φ. There is a unique total strategy on the (positive) game above in

both cases, and this family is uniform in the sense that the strategy on models which

satisfy φ is a substrategy of the strategy on models satisfying φ — if (L,v) |= φ and

(L′,v′) |=φ then σJ>®(φ�>)K(L,v) ⊆σJ>®(φ�>)K(L′,v′).

In contrast, consider the formula ⊥�(φ⊕(>®φ)). The game forest is given as follows,

using the same notation as above:

q

t f

p



There is a family of strategies on this (negative) game: if φ is true, Player plays f and if φ

is true, Player plays t. However, this strategy is not uniform as the choice of second move

depends on the truth value of φ in the appropriate L -structure. Dually, the formula is

not provable in WS1.

In this section we formalise uniformity of strategies.

Game Embeddings

To formalise subgames and uniformity categorically, we use the following machinery of

embedding-projection pairs:

Definition Let C be a poset-enriched category. The category Ce has the same objects

as C and a map A → B in Ce consists of a pair (i f , p f ) where i f : A → B and p f : B → A

in C , such that p f ◦ i f = id and i f ◦ p f v id.

• The identity is given by (id, id).

• For composition, set (i f , p f )◦ (i g, pg) = (i f ◦ i g, pg ◦ p f ). We need to check this is a

valid pairing: p f ◦g ◦ i f ◦g = pg ◦ p f ◦ i f ◦ i g = pg ◦ id◦ i g = id and i f ◦g ◦ p f ◦g = i f ◦ i g ◦
pg ◦ p f v i f ◦ id◦ p f = i f ◦ p f v id.

• It is clear that composition is associative and that f = f ◦ id= id◦ f .

Let G denote the poset-enriched category of win-games and (not-necessarily winning)

strategies, and Gs its subcategory of strict strategies, with v given by strategy inclusion.

A forest embedding of A into B corresponds to a map A → B in Ge.

Remark Note that morphisms in Ge are not winning. The reason for this is that strate-

gies that realise forest embeddings need not be total (e.g. the embedding I → ⊥). A

consequence of this is that the embeddings ignore winning conditions. To consider em-

beddings of the winning condition also, we could have required that maps σ ∈ Ge(A,B)

satisfy the second condition of the definition of winningness in Section 3.2.3. However,

we will not need this condition here.

Proposition 4.2.1 If f : A → B in Ge then i f and p f are strict.

Proof If i f responds to an opening move in B with a move in B then so does i f ◦ p f and

so i f ◦ p f v id fails. Similarly, if p f responds to an opening move in A with a move in A

then so does p f ◦ i f and so p f ◦ i f = id fails.

We can thus define identity-on-objects functors i : Ge →Gs and p : Ge →G
op
s each select-

ing the appropriate component of the embedding.



In fact, we know something stronger about i f and p f : the components of any embed-

ding are of zig-zag shape [54] i.e. the strategy responds to every move in A (resp. B) with

a move in B (resp. A) if it responds at all.

We can show that our operations on win-games lift to functors on Ge.

Proposition 4.2.2 Each of the operations (,®,⊗,&,! extend to covariant (bi)functors on

Ge.

Proof • We set (i, p)⊗ (i′, p′)= (i⊗ i′, p⊗ p′). Then (p⊗ p′)◦ (i⊗ i′)= (p ◦ i)⊗ (p′ ◦ i′)=
id⊗ id= id and (i⊗ i′)◦ (p⊗ p′)= (i◦ p)⊗ (i′ ◦ p′)v id⊗ id= id as required. The case for

& and ® are similar, as they form monotonic bifunctors on Gs.

• We set (i, p)( (i′, p′)= (p ( i′, i ( p′). Then (i ( p′)◦ (p ( i′)= (p ◦ i)( (p′ ◦ i′)=
id( id= id and (p ( i′)◦ (i ( p′)= (i ◦ p)( (i′ ◦ p′)v id( id= id.

• We set !(i, p)= (!i, !p). Then !p◦!i =!(p ◦ i)=!id= id and !i◦!p =!(i ◦ p)v!id= id.

Lax natural Transformations

Given an embedding e : A → B and strategies σA : A, σB : B, σB restricts to σA if σA =
pe ◦σB. We generalise this idea using lax natural transformations.

Definition Let C be a category, D a poset-enriched category and F,G : C → D. A lax

natural transformation F ⇒ G is a family of arrows µA : F(A) → G(A) such that ηB ◦
F( f )wG( f )◦ηA.

F(A)
µA- G(A)

w

F(B)

F( f )

?

µB
- G(B)

G( f )

?

It is clear that natural transformations are lax natural, by reflexivity of v. We can

compose lax natural transformations using vertical composition:

F(A)
µA- G(A)

ηA- H(A)

w w

F(B)

F( f )

?

µB
- G(B)

G( f )

?

ηB
- H(B)

H( f )

?

There is also a form of horizontal composition, provided that one of the two functors is

the identity.



Proposition 4.2.3 Let H,G : C →D and µ : G ⇒ H a lax natural transformation.

• If F : B →C then there is a lax natural transformation µF : G ◦F ⇒ H ◦F.

• If J : D → E is monotonic then there is a lax natural transformation Jµ : J ◦G →
J ◦H.

Proof Define (µF)A =µF(A). Then (µF)B◦GF( f )=µF(B)◦GF( f )w HF( f )◦µF(A) = HF( f )◦
(µF)A.

Similarly, let (Jµ)A = J(µA). Then (Jµ)B ◦ JG( f ) = J(µB ◦G( f )) w J(H( f ) ◦µA) =
JH( f )◦ J(µA)= JH( f )◦ (Jµ)A as required.

Uniform Winning Strategies

Definition Let F,G : C →Ge. A uniform strategy from F to G is a lax natural transfor-

mation σ : i ◦F ⇒ i ◦G. A uniform total strategy is a uniform strategy σ where each σA

is total. A uniform winning strategy is a uniform strategy where each σA is winning.

If f : A → B, the lax naturality condition requires iG( f ) ◦σA v σB ◦ iF( f ). Thus σA =
pG( f ) ◦ iG( f ) ◦σA v pG( f ) ◦σB ◦ iF( f ). But since σA is total, it is maximal in the ordering

v and we must have σA = pG( f ) ◦σB ◦ iF( f ). Similarly, we see that σA = pG( f ) ◦σB ◦ iF( f )

implies the lax naturality condition as iG( f )◦σA = iG( f )◦pG( f )◦σB◦iF( f ) vσB◦iF( f ). Thus,

lax naturality captures the fact that σA is determined by σB via restriction. If F is the

constant functor κI , this reduces to σA = pG( f ) ◦σB.

We can construct a WS-category of uniform strategies over a base category C . Let

GC be the category where:

• Objects are functors C →Ge

• An arrow F →G is a uniform strategy F ⇒G

• Composition is given by vertical composition of lax natural transformations

• The identity on a functor F is given by the lax natural transformation η : F ⇒ F

where ηA = idF(A).

Similarly, we can construct a category W C of functors and uniform winning strategies.

Proposition 4.2.4 GC is a WS!-category.

Proof • Symmetric monoidal category: F⊗G is defined to be ⊗◦(F×G)◦∆ where

∆ : C → C ×C is the diagonal. So, (F ⊗G)(A) = F(A)⊗G(A). On arrows, we set

(η⊗ρ)A = ηA ⊗ρA. We need to show that if f : L → K then (iA( f )⊗ iC( f ))◦ (ηK ⊗ρK )w
(iB( f ) ⊗ iD( f )) ◦ (ηL ⊗ρL). That is, we need to show that (iA( f ) ◦ηK )⊗ (iC( f ) ◦ρK ) w



(iB( f )◦ηL)⊗(iD( f )◦ρL). But this is clear by lax naturality of η and ρ and monotonicity

of ⊗.

The tensor unit I is the constant functor, sending all objects to the game I and

arrows to idI .

The morphisms assoc, runit⊗, lunit⊗ and sym are defined pointwise: e.g. (assocF,G,H)X

= assocF(X ),G(X ),H(X ). To check for lax naturality, we must use horizontal composi-

tion. For example, consider the map assoc : (F ⊗G)⊗H → F ⊗ (G⊗H) defined point-

wise as described. The domain is (F ⊗G)⊗H = ((_⊗_)⊗_)◦ (i ◦F × i ◦G× i ◦H)◦∆3

where ∆3 denotes the diagonal functor C → C ×C ×C . Similarly, the codomain

is (_⊗ (_⊗ _)) ◦ (i ◦F × i ◦G × i ◦H) ◦∆3. We can thus see that assoc is equal to the

horizontal composition assocJ where J = (i ◦F × i ◦G × i ◦H) ◦∆3 and assoc is the

natural transformation _⊗ (_⊗_)⇒ (_⊗_)⊗_ in Gs.

C
∆3- C ×C ×C

i ◦F × i ◦G× i ◦H- Gs ×Gs ×Gs
_⊗ (_⊗_)- Gs

C
∆3-

id

wwwwwwwww
C ×C ×C

i ◦F × i ◦G× i ◦H-

id

wwwwwwwww
Gs ×Gs ×Gs

(_⊗_)⊗_-

assoc

wwwwwwwww
Gs

One can similarly express the other monoidal isomorphisms in this way to see lax

naturality. The coherence equations lift pointwise from G .

• Symmetric monoidal closed category: We have seen that ( extends to a co-

variant bifunctor on Ge. The object F (G is defined to be ( ◦(F×G)◦∆. We define

Λ : GC (F ⊗G,H)→GC (F,G ( H) pointwise by Λ(η)A =Λ(ηA).

We need to show that if η : F ⊗G ⇒ H is lax natural then so is Λ(η). If f : A → B we

need to show that Λ(ηB)◦ iF( f ) w (pG( f ) ( iH( f ))◦Λ(ηA). But Λ(ηB)◦ iF( f ) =Λ(ηB ◦
(iF( f )⊗id)) and (pG( f ) ( iH( f ))◦Λ(ηA)=Λ(iH( f )◦ηA◦(id⊗pG( f ))) and so it is sufficient

to show that Λ(ηB ◦ (iF( f ) ⊗ id)) wΛ(iH( f ) ◦ηA ◦ (id⊗ pG( f ))). By monotonicity of Λ, it

is sufficient to show that ηB◦(iF( f )⊗id)w iH( f )◦ηA ◦(id⊗pG( f )). But ηB◦(iF( f )⊗id)w
ηB ◦ (iF( f ) ⊗ id)◦ (id⊗ iG( f ))◦ (id⊗ pG( f )) w iH( f ) ◦ηA ◦ (id⊗ pG( f )) using lax naturality

of η, as required.

The equation Λ(F ◦G ◦ (H ⊗ J)) = (J ( F) ◦Λ(G) ◦H which shows that Λ is a nat-

ural transformation of hom sets lifts pointwise from G . The fact that Λ defines an

isomorphism of hom sets also inherits from G , defining Λ−1(η)A =Λ−1(ηA).

• Inclusive sequoidal category: The subcategory GC
s is defined to be the uniform

strategies that are pointwise strict. Then F ®G is defined to be ®◦ (F ×G)◦∆ and

η®ρ is defined pointwise. We can see that η®ρ is lax natural from monotonicity of



® on arrows. The sequoidal natural (iso)morphisms inherit from G , and once again

we can show lax naturality using horizontal composition.

• Products: The product operation on objects of GC is defined to be ×′ ◦ (F ×G)◦∆
where ×′ represents the product bifunctor on Ge (previously denoted ×). The projec-

tions are defined pointwise. To see that they are uniform strategies (in particular

lax natural) we note that πi : F1×F2 ⇒ Fi can be defined using horizontal composi-

tion. If η : F ⇒G and ρ : F ⇒ H then 〈η,ρ〉 : F ⇒G×H is defined by 〈η,ρ〉A = 〈ηA,ρA〉
using pairing in G . The fact that the universal property is satisfied lifts from G .

GC
s also has products, preserved by the inclusion functor into GC .

• Decomposable and Distributive: The decomposability and distributivity axioms

inherit from pointwise from G .

• Sequoidal closed category: We need to show that the operation Λs : f 7→ Λ( f ◦
wk) : GC

s (B® A,C) → GC
s (B, A ( C) is an isomorphism. Given η : B® A → C in GC

s

we can construct Λ−1
s (η) : GC

s (B, A (C)⇒GC
s (B®A,C) by Λ−1

s (η)A =Λ−1
s (ηA) using

sequoidal closure of G .

• Linear functional extensionality: The fact that lfe has an inverse lifts pointwise

from G .

• Coalgebraic exponential comonoid: We need to show that the functor F®_ has

a final coalgebra !F for each F. The object !F is simply ! ◦F, and we set (αF )A =
αF(A). We can show that α is lax natural using horizontal composition. Given

η : G ⇒ F ®G we define $η% : G ⇒!F to be $η%A =$ηA%. We need to show that

$η% is lax natural.

Let A,B,C,D ∈ G , f : B → D and strict g : A → C. We need to show that (g® f ) ◦
σAB vσCD ◦ f implies !g ◦$σAB%v$σCD%◦ f .

We first show that !g ◦$σAB%=$(g® id)◦σAB%. We know that !g =$(g® id)◦α%
and so by fusion it is sufficient to show that (g® id)◦α◦$σAB%= (id®$σAB%)◦(g®
id)◦σAB. But we know that α◦$σAB%= (id®$σAB%)®σAB (cancellation law) so

this is clear.

We thus need to show that $(g® id)◦σAB%v$σCD%◦ f . By Proposition 3.3.3 it is

sufficient to show that (id® f ) ◦ (g® id) ◦σAB v σCD ◦ f i.e. (g® f ) ◦σAB v σCD ◦ f ,

which we know is true by lax naturality of σ.

The fact that$η% is the unique morphism such that α◦$η%= (id®$η%)◦η inherits

from this property in G .

The commutative comonoid !F ⇒!F⊗!F is defined pointwise from G with (dF )(A) =
dF(A). We know that this is a lax natural transformation by horizontal composition,



since d is natural. The commutative comonoid equations inherit pointwise from G ,

as does the equation wk◦ (der⊗ id)◦d=α.

Finally we need to check that for any commutative comonoid m : F ⇒ F ⊗F and

g : G ⇒ F, g† =$wk◦(g⊗id)◦m% is the unique comonoid morphism with g = der◦g†.

Let m and g be as such. We can show g† is a comonoid morphism pointwise, since

each mA is a commutative comonoid in G . For uniqueness, we also note that any

comonoid morphism h : G ⇒!F satisfying g = der ◦ h at component A must be a

comonoid morphism G(A) →!F(A) in G satisfying gA = der ◦hA. Thus hA =!gA by

uniqueness in G . Since this holds for all objects A, we have h = g†.

Proposition 4.2.5 W C is a WS!-category.

Proof We proceed precisely as in Proposition 4.2.5, lifting the structure of a WS!-category

in W to that in W C . In particular, pointwise-winningness of the relevant morphisms in

W C inherits from the winningness in W .

We can hence interpret WS! in these categories, for any C . In particular, we see

that each operation on winning strategies denoted by a proof rule lifts to an operation

on uniform winning strategies.

Category of L -structures

Definition Given a set of variables X and context Θ, we let M X
Θ denote the category of

Θ-satisfying L -models over X . Objects are L -models over X that satisfy each formula

in Θ. A morphism (L,v)→ (L′,v′) is a map f : |L|→ |L′| such that:

• For each x ∈ X , v′(x)= f (v(x))

• If (L,v) |=φ(−→a ) for −→a ∈ |L|ar(φ) then (L′,v′) |=φ(
−−→
f (a))

• For each function symbol g in L , f (IL(g)(−→a ))= IL′(g)(
−−→
f (a)).

Note that since the positive atoms include inequality, such morphisms must be injective.

Also note that if f : (L,v)→ (L′,v′) and (L,v) |=φ(−→s ) then (L′,v′) |=φ(−→s ).

If v is a valuation on X , define v[x 7→ l] on X ∪ {x} to be the valuation sending y to

v(y) if y 6= x, and x to l. Given f : (L,v) → (M,w) in MΘ
X and s a term with FV (s) ⊆ X , f

is also a map (L,v[x 7→ v(s)])→ (M,w[x 7→ w(s)]) in MΘ
X∪{x}. We know that f preserves all

of the valuations other than x, and for x we see that f (v[x 7→ v(s)](x)) = f (v(s)) = w(s) =
w[x 7→ w(s)](x).

We will give semantics of sequents X ;Θ ` Γ as functors M X
Θ → Ge, and proofs as

uniform winning strategies. Proofs of X ;Θ ` M,Γ will be given semantics as an arrow

κI → JX ;Θ` M,ΓK and proofs of X ;Θ` P,Γ as an arrow JX ;Θ` P,ΓK→ κ⊥.



4.2.2 Quantifiers as Adjoints

In this section, we will discuss an adjunction that will allow us to interpret the quanti-

fiers. By Proposition 4.2.5, if X ;Θ is fixed then W MΘ
X is a WS!-category. This will thus

give interpretation of all of the rules of WS!. For the P∀ and P∃ rule, however, we must

pass between W MΘ
X for varying X .

We first define some functors between these categories.

• If FV (s) ⊆ X we can define a functor setx
s : MΘ

X → MΘ
X]{x} by setx

s (L,v) = (L,v[x 7→
v(s)]) and if f : (L,v) → (M,w) we set setx

s ( f ) = f . We need to check that setx
s ( f ) is a

valid morphism. We know that setx
s ( f ) preserves all variables in X , and setx

s ( f )(v[x 7→
v(s)](x)) = f (v(s)) = w(s) = w[x 7→ w(s)](x) as required. It is clear that setx

s is functo-

rial.

From this we can extract a functor set′xs : W MΘ
X]{x} → W MΘ

X , mapping F to F ◦ setx
s ,

with an action on arrows defined by horizontal composition.

• If x does not occur in Θ, there is an evident forgetful functor Ux : MΘ
X]{x} → MΘ

X

mapping (L,v) to (L,v− x). From this we can extract a functor U ′
x : W MΘ

X →W MΘ
X]{x}

mapping F to F ◦Ux, with an action on arrows defined by horizontal composition.

Note that Ux ◦ setx
s = id and so set′xs ◦U ′

x = id.

We will show that U ′
x has a right adjoint ∀x._. Assuming empty Γ, this allows us to

interpret the rules P∀ and P∃.

• For P∀, the premise is a map I →∀x.JNK in W MΘ
X]{x} and the conclusion is a map

I =U ′
x(I)→ JNK in W MΘ

X . The adjunction assures us that there is a natural bijection

between this hom sets.

X ] {x};Θ`∀x.N
P∀ X ;Θ`∀x.N

• The premise of the P∃ rule provides a map JP[s/x]K→⊥. Since JP[s/x]K= set′xs (JPK),
and the conclusion requires map ∀x.JPK→⊥, we need only provide a map ∀x.JPK→
set′xs (JPK).

X ;Θ` P[s/x]
Ps
∃ FV (s)⊆ XX ;Θ`∃x.P

We note that the adjunction comes equipped with a unit U ′
x ◦∀x ⇒ id. This yields a

map ∀x.JPK= set′xy (U ′
x(∀x.JPK))⇒ set′xy (JPK) as required.

We can hence use the existence of a right adjoint for U ′
x (together with a suitable dis-

tributivity isomorphism to deal with nonempty Γ) to give semantics to P∀ and P∃. We

next show that U ′
x has a right adjoint ∀x._.



The FamInj Construction

Definition Let C be a category. We define the category FamInj(C ). An object is a set

I and a family of C -objects {A i : i ∈ I}. An arrow {A i : i ∈ I} → {B j : j ∈ J} is a pair

( f , { f i : i ∈ I}) where f is an injective function I → J and each f i : A i → B f (i). We will

often write such a map as ( f , { f i}) when we wish to leave the indexing set implicit.

• Composition is defined by ( f , { f i})◦ (g, {g i})= ( f ◦ g, { fg(i) ◦ g i}).

• The identity {A i : i ∈ I}→ {A i : i ∈ I} is given by (id, {idA i }).

• Satisfaction of the categorical axioms is inherited from C .

Definition Let F : C → D. We define FamInj(F) : FamInj(C ) → FamInj(D). On objects,

FamInj(F)({A i : i ∈ I})= {F(A i) : i ∈ I}. On arrows, FamInj(F)( f , { f i})= ( f , {F( f i)}). We need

to show that FamInj(F) is a functor:

• It is clear that FamInj(F) preserves the identity.

• For composition: FamInj(F)(( f , { f i})◦ (g, {g i}))=FamInj(F)( f ◦ g, { fg(i) ◦ g i})=
( f ◦ g,F( fg(i) ◦ g i))= ( f ◦ g,F( fg(i))◦F(g i))= ( f , {F( f i)})◦ (g, {F(g i)})=
FamInj(F)( f , { f i})◦FamInj(F)(g, {g i}).

We define a distributivity functor dst : FamInj(C )×D → FamInj(C ×D) by dst({A i : i ∈
I},B)= {(A i,B) : i ∈ I} and dst(( f , { f i}), g)= ( f , {( f i, g)}).

Constructing ∀x.F

First, we construct arbitrary products on games.

Definition Let X be a set and {Ax : x ∈ X } a family of win-games indexed by X , each

with polarity p. We define the game S =∏
x∈X Ax by (MS,ΛS, p,PS,WS) by:

• MS =∑
x∈X MAx

• λS(inx(m))=λAx (m)

• PS = {in∗x (s) : x ∈ X , s ∈ PAx }

• Ws = {inωx (s) : x ∈ X , s ∈WAx }

If p = O then this is the product over an X -indexed family of games, if p = P then

this acts as the coproduct. We can thus equip the game categories G , Ge, Ws and W with

arbitrary products.

Suppose F is an object in W MΘ
X]{x} (a functor MΘ

X]{x} → Ge). We define ∀x.F as an

object in W MΘ
X (a functor MΘ

X →Ge).



We first define a product functor prod : FamInj(Ge)→Ge. On objects, prod sends {G i : i ∈ I}

to
∏

i∈I G i. On arrows, let f : {G j : j ∈ J}→ {Hh : h ∈ H}. The embedding part of prod( f ) is

given by 〈gh〉h where gh = i f j ◦π j if h = f ( j) and ε otherwise. The projection part is given

by 〈p f j ◦π f ( j)〉 j. We must check that:

• prod( f ) is a valid embedding-projection pair: We need to check that pprod( f ) ◦
iprod( f ) = id. If f : {A i : i ∈ I}→ {B j : j ∈ J} we need to show that πi ◦ pprod( f ) ◦ iprod( f ) =
πi for each i. But this is p f i ◦π f (i) ◦ iprod( f ) = p f i ◦ i f i ◦πi = πi as required. We also

need to check that π j ◦ iprod( f ) ◦ pprod( f ) v π j for each j. If j is not in the image of f ,

then π j◦iprod( f )◦pprod( f ) = ε and so we are done. If j = f (i) then π j◦iprod( f )◦pprod( f ) =
i f i ◦πi ◦ pprod( f ) = i f i ◦ p f i ◦πi v id◦π f (i) =π f (i) =π j as required.

• prod preserves the identity: To see that prod(id)= id, note that prod(id, {(id, id)})=
(〈id◦π j〉 j,〈id◦πi〉i)= (id, id)= id.

• prod preserves composition: Suppose g : {A j : j ∈ J}→ {Bk : k ∈ K} and f : {Bk : k ∈
K} → {Cl : l ∈ L}. We need to show that iprod( f ◦g) = iprod( f ) ◦ iprod(g) and pprod( f ◦g) =
pprod(g) ◦ pprod( f ).

We first show that iprod( f ◦g) = iprod( f )◦iprod(g). We show that for each l, πl◦iprod( f ◦g) =
πl ◦ iprod( f ) ◦ iprod(g). We consider cases.

– If l = f (g( j)) then LHS is i fg( j)◦g j ◦π j = i fg( j))◦i g j ◦π j. The RHS is π f (g( j))◦iprod( f )◦
iprod(g) = i fg( j) ◦πg( j) ◦ iprod(g) = i fg( j)) ◦ i g j ◦π j as required.

– If l is not in the range of f ◦ g then either l is not in the range of f , or l = f (k)

and k is not in the range of g. In the first case, the LHS is ε and the RHS is

ε◦ iprod(g) = ε, as required.

– In the second case, if l = f (k) and k is not in the range of g, the LHS is ε and

the RHS is i fk ◦πk ◦ iprod(g) = i fk ◦ε. This is ε since i fk is strict, as required.

We next show that pprod( f ◦g) = pprod(g) ◦ pprod( f ). We show that for each j, π j ◦
pprod( f ◦g) =π j◦pprod(g)◦pprod( f ). Well the LHS is p fg( j)◦g j◦π f (g( j)) = pg j◦p fg( j)◦π f (g( j)).

The RHS is pg j ◦πg( j) ◦ pprod( f ) = pg j ◦ p fg( j) ◦π f (g( j)) as required.

We next define a functor addx : MΘ
X → FamInj(MΘ

X]{x}) which sends a model (L,v) to

the family {(L,v[x 7→ i]) : i ∈ |L|}. On arrows, if f : (L,v) → (L′,v′) we set addx( f ) = ( f , { f i})

where f i : (L,v[x 7→ i])→ (L′,v[x 7→ f (i)]) is just f . We need to check that this is functorial.

• It is clear that the identity is preserved.

• For composition, addx( f ◦ g)= ( f ◦ g, { f ◦ g})= ( f , { f })◦ (g, {g})= addx( f )◦addx(g).

Finally, given F : MΘ
X]{x} →Ge we define ∀x.F : MΘ

X →Ge to be prod◦FamInj(F)◦addx.



Constructing the Unit

We must next give the unit of this adjunction. For each F, we must give a uniform

winning strategy η : U ′
x(∀x.F) ⇒ F. Such an η is a winning uniform strategy prod ◦

FamInj(F)◦addx◦Ux ⇒ F. Note that (prod◦FamInj(F)◦addx◦Ux)(L,v)= prod({F(L,v−x[x 7→
l]) : l ∈ L}) = ∏

l∈L F(L,v[x 7→ l]). Thus η(L,v) must be a winning strategy
∏

l∈L F(L,v[x 7→
l])→ F(L,v) and we take η(L,v) =πv(x).

For uniformity, the following diagram must lax-commute:

∏
l∈L

F(L,v[x 7→ l])
πv(x)- F(L,v[x 7→ v(s)])

∏
m∈M

F(M,w[x 7→ m])

iprod(F( f ))

?

πw(x)
- F(M,w[x 7→ w(s)])

iF( f )

?

Note that w(x) = f (v(x)) and iprod(F)( f ) = 〈gn〉n where g f (y) = iF( f ) ◦πy. Thus, πw(x) ◦
iprod(F)( f ) =π f (v(x)) ◦ iprod(F)( f ) = iF( f ) ◦πv(x) as required.

Universal Property

Given f : U ′
x(F)→G we must show that there is a unique f̂ : F →∀x.G such that f = ηG ◦

U ′
x( f̂ ). Let f be such a uniform winning strategy. Then we must give winning strategies

f̂(L,v) : F(L,v)→∏
l∈L G(L,v[x 7→ l]). Set f̂(L,v) = 〈hl〉l where hl : F(L,v)→G(L,v[x 7→ l]) is

defined by f(L,v[x 7→l]). To see that f̂ is uniform, the following diagram must lax-commute:

F(L,v)
f̂(L,v)-

∏
l∈L

G(L,v[x 7→ l])

w

F(M,w)

iF( f )

? f̂(M,w)-
∏

m∈M
G(M,w[x 7→ m])

iprod(G( f ))

?

It is sufficient to show that πm◦ f̂(M,w)◦ iF( f ) wπm◦ iprod(G( f ))◦ f̂(L,v) for each m. If m is not

in the image of f , the right-hand side is {ε} and so we are done. If m = f ( j) the RHS is

iG( f ) ◦π j ◦ f̂(L,v) = iG( f ) ◦ f(L,v[x 7→ j]) and the LHS is f(M,w[x 7→m]) ◦ iF( f ) = f(M,w[x 7→ f ( j)]) ◦ iF( f ).

Thus it is sufficient to show that f(M,w[x 7→ f ( j)])◦iF( f ) w iG( f )◦ f(L,v[x 7→ j]), which follows from

lax naturality of f .

We next need to show that f̂ satisfies the universal property. First, we must show

that f = ηG◦U ′
x( f̂ ). It suffices to show that for each (L,v), f(L,v) = ((ηG)◦U ′

x( f̂ ))L,v. Compo-

sition in is given by vertical composition. Thus, the RHS is given by πv(x) ◦〈 f(L,v[x 7→l])〉l =



f(L,v[x 7→v(x)]) = f(L,v) as required.

We need to show that f̂ : F → ∀x.G is the unique uniform strategy satisfying f =
ηG ◦U ′

x( f̂ ). Suppose h : F → ∀x.G in W MΘ
X satisfies this property. Then given (L,v) in

MΘ
X]{x}, we know that f(L,v) = ηG(L,v) ◦h(L,v−x) =πv(x) ◦h(L,v−x). (1)

Let (L,v) ∈ MΘ
X . We must show that h(L,v) = f̂(L,v) = 〈 f(L,v[x 7→l])〉l . Thus we need to

show that for each l, πl ◦h(L,v) = f(L,v[x 7→l]). But consider the model (L,v[x 7→ l]). Then by

(1) f(L,v[x 7→l]) =πv[x 7→l](x) ◦h(L,v[x 7→l]−x) =πl ◦h(L,v), as required.

Thus, we see that

Proposition 4.2.6 The functor U ′
x : W MΘ

X →W MΘ
X]{x} has a right adjoint given by ∀x._ =

prod◦FamInj(_)◦addx : W MΘ
X]{x} →W MΘ

X

Concretely, if N : MΘ
X]{x} → Ge then on objects J∀x.NK(L,v) = ∏

l∈|L|JNK(L,v[x 7→ l]).

On arrows, if f : (L,v)→ (L′,w) then

J∀x.NK( f ) :
∏

l∈|L|
JNK(L,v[x 7→ l])→ ∏

l∈|L′|
JNK(L′,w[x 7→ l])

is given as follows: The embedding part (left to right) is given by 〈gm〉m where gm = ε if

m is not in the image of f , and gm = iJNK( f )◦πl if m = f (l) (note in this case l is unique

by injectivity of f ). The projection part is given by 〈pJNK( f )◦π f (l)〉l .

Family of Adjunctions

We have exhibited an adjunction U ′
x a∀x._ for each X and x, but we have not discussed

how these adjunctions fit together. Here we consider an indexed category W MX over

the variable set X , and show that the family of adjunctions satisfy a Beck-Chevalley

condition. In this section we assume that the Θ component is empty.

Let Set denote the category of (variable) sets and functions between them. We can

describe a functor I : Set→Cat.

• On objects, I(X )=W MX .

• On arrows, if f : X →Y we must give a functor I( f )(F) : W MX →W MY .

– Define f̃ : MY → MX . On objects, f̃ (M,v) = (M,v ◦ f ). If h : (M,v) → (N,v′) in

MY , then h◦v = v′ and so h◦v◦ f = v′◦ f and so h : (M,v◦ f )→ (N,v′◦ f ) in MX ,

let f̃ (h)= h.

– On objects, if F : MX →Ge we define I( f )(F) : MY →Ge = F ◦ f̃ .

– On arrows, if σ : F ⇒ G : MX → Ge, define I( f )(F)(σ) : F ◦ f̃ ⇒ G ◦ f̃ = σ f̃ using

horizontal composition.



Note that U ′
x : W M

X →W M
X]{x} = I(in1) and the following diagram commutes:

W MX
I(in1) - W MX]{x}

W MY

I( f )

?
I(in1) - W MY]{y}

I( f ] {x 7→ y})

?

Since I(in1) a ∀x._, the Beck-Chevalley condition asks if the following diagram com-

mutes:

W MX �∀x._
W MX]{x}

W MY

I( f )

?
�∀y._

W MY]{y}

I( f ] {x 7→ y})

?

We check this extensionally, first considering objects. Let F ∈ MX]{x} and (M,v) ∈ MY .

Then the LHS at (M,v) is (∀x.F)(M,v ◦ f ) = ∏
m∈M F(M,v ◦ f [x 7→ m]). The RHS is

[∀y.I( f ] {x 7→ y})(F)](M,v) = ∏
m∈M I( f ] {x 7→ y})(F)(M,v[y 7→ m]) = ∏

m∈M F(M,v[y 7→
m]◦ ( f ] {x 7→ y}))=∏

m∈M F(M,v◦ f [x 7→ m]) as required.

On arrows, let σ : F ⇒ G : MX]{x} → Ge and (M,v) ∈ MY . We must check that

I( f )(∀x.σ)(M,v) = (∀y.I( f]{x 7→ y})(σ))(M,v). But ∀x.σ= �σ◦η and so the LHS is �σ◦η(M,v◦ f ) =
〈(σ◦η)(M,v◦ f [x 7→l])〉l = 〈σ(M,v◦ f [x 7→l]) ◦πl〉l . The RHS is (∀y.I( f ] {x 7→ y})(σ))(M,v) =
( áI( f ] {x 7→ y})(σ)◦η)(M,v) = 〈(I( f ] {x 7→ y})(σ)◦η)(M,v[y7→l])〉l = 〈σ(M,v[y7→l]◦( f]{x 7→y})) ◦πl〉l =
〈σ(M,v◦ f [x 7→l]) ◦πl〉l as required.

4.2.3 Semantics of Sequents

We next give semantics of sequents X ;Θ` Γ as functors MΘ
X → Ge. For the formulas of

WS!, we note that W MΘ
X is a WS!-category, and so we can use the categorical semantics

of sequents therein. We exhibit these concretely here. For brevity, Φ ranges over X ;Θ

contexts. If F,G : MΘ
X → Ge and � : Ge ×Ge → Ge then we write F �G : MΘ

X → Ge for

�◦ (F ×G)◦∆, where ∆ : C →C ×C is the diagonal functor.



JΦ` 1K = κI JΦ` 0K = κI

JΦ`⊥K = κ⊥ JΦ`>K = κ⊥
JΦ` M⊗NK = JΦ` MK⊗ JΦ` NK JΦ` POQK = JΦ` PK⊗ JΦ`QK
JΦ` M&NK = JΦ` MK× JΦ` NK JΦ` P ⊕QK = JΦ` PK× JΦ`QK
JΦ` M®NK = JΦ` MK® JΦ` NK JΦ` P�QK = JΦ` PK® JΦ`QK
JΦ` M�QK = JΦ`QK( JΦ` MK JΦ` P ®NK = JΦ` NK( JΦ` PK
JΦ`!NK = !JΦ` NK JΦ`?PK = !JΦ` PK
JΦ`φ(−→s )K(L,v) = I if (L,v) |=φ(−→s ) JΦ`φ(−→s )K(L,v) = I if (L,v) |=φ(−→s )

JΦ`φ(−→s )K(L,v) = ⊥ if (L,v) |=φ(−→s ) JΦ`φ(−→s )K(L,v) = ⊥ if (L,v) |=φ(−→s )

JX ;Θ`∀x.NK = ∀x.JX ] {x};Θ` NK
JX ;Θ`∃x.PK = ∀x.JX ] {x};Θ` PK

JΦ` M,Γ, NK = JΦ` M,ΓK® JΦ` NK JΦ` M,Γ,PK = JΦ` PK( JΦ` M,ΓK
JΦ` P,Γ, NK = JΦ` NK( JΦ` P,ΓK JΦ` P,Γ,QK = JΦ` P,ΓK® JΦ`QK

In the case of atoms, the functors are specified pointwise on objects, and we must also

define the (functorial) action on arrows. Let f : (L,v)→ (L′,v′). If the truth value of φ(−→s )

is the same in (L,v) and (L′,v), we use the identity embedding (id, id). If the truth value

of φ(−→s ) is different, we must have (L,v) |= φ(−→s ) and (L′,v) |= φ(−→s ) since morphisms in

MX preserve truth of positive atoms. Thus we need an embedding I →⊥. We can take

(εI(⊥,ε⊥(I ) where εA is the strategy containing just the empty sequence. Note that

ε⊥(I ◦ εI(⊥ = εI = idI and εI(⊥ ◦ ε⊥(I = εv id⊥ (ε is the bottom element with respect to

v).

We must check functoriality. We have already noted that if the truth value of φ(−→s )

is the same in (L,v) and (L′,v′) then Jφ(−→s )K( f ) = id, so in particular Jφ(−→s )K(id) = id. For

composition, suppose f : (L,v) → (L′,v′) and g : (L′,v′) → (L′′,v′′). We can consider the

truth value of φ(−→s ) in each of these models (only some cases are possible, as morphisms

preserve truth of positive atoms).

(L,v) |= (L′,v′) |= (L′′,v′′) |= Jφ(−→s )K(g)◦ Jφ(−→s )K(g)= Jφ(−→s )K(g ◦ f )

φ(−→s ) φ(−→s ) φ(−→s ) (id, id)◦ (id, id)= (id, id)

φ(−→s ) φ(−→s ) φ(−→s ) (ε,ε)◦ (id, id)= (ε,ε)

φ(−→s ) φ(−→s ) φ(−→s ) (id, id)◦ (ε,ε)= (ε,ε)

φ(−→s ) φ(−→s ) φ(−→s ) (id, id)◦ (id, id)= (id, id)



4.2.4 Contexts and Distributivity

In Section 2.3.4 we noted that we can give an equivalent semantics of sequents via

context-functors: each context Γ yields two endofunctors JΓK+,JΓK− : W
MΘ

X
s →W

MΘ
X

s . These

yield functors JΓKb
1 : Gs ×MΘ

X →Gs given concretely by:

JεK+1 = π1 JεK−1 = π1

JΓ,PK+1 = JΓK+1 ® (i ◦ JPK◦π2) JΓ,PK−1 = (p ◦ JPK◦π2)( JΓK−1
JΓ, MK+1 = (p ◦ JMK◦π2)( JΓK+1 JΓ, MK−1 = JΓK−1 ® (i ◦ JMK◦π2)

Proposition 4.2.7 If A is negative then i ◦JA,ΓK= JΓK−1 ◦ (i ◦JAK× id)◦∆; if A is positive

then i ◦ JA,ΓK= JΓK+1 ◦ (i ◦ JAK× id)◦∆.

Proof Simple induction on Γ.

We next show that if x 6∈ FV (Γ) there is an isomorphism distΓ : J∀x.A,ΓK ∼= ∀x.JA,ΓK in

W MΘ
X .

First, we note that there is a natural isomorphism

dist® : _®_◦ (prod× id)⇒ prod◦FamInj(_®_)◦dst : FamInj(Gs)×Gs →Gs

which concretely is a family of winning strategies

prod({G i : i ∈ I})®M → prod({G i ®M : i ∈ I})

given by dist® = 〈πi ® id〉i. Each dist® is an is an isomorphism in Ws.

We next check that dist® is a natural. If ( f , { f i}) : {G i} → {H j} in FamInj(Gs) and

g : M ( N we have 〈a j〉 j = dist®◦prod( f , { f i})®g = prod( f , { f i®g})◦dist® = 〈b j〉 j. We show

that a j = b j.

If j is not in the range of f , then a j =π j◦dist®◦ε®g =π j◦dist®◦ε= ε= ε◦dist® = b j, as

required. If j = f (i) then a j =π j ◦dist®◦prod( f , { f i})® g = (π j® id)◦(prod( f , { f i})® g)= (π j ◦
prod( f , { f i})®g)= f i◦πi®g. While b j = ( f i®g)◦πi◦dist® = ( f i®g)◦(πi®id)= f i◦πi®g = a j

as required.

Similarly, we can define a natural isomorphism

dist( : prod({M (G i : i ∈ I})∼= M ( prod({G i : i ∈ I})



between functors

_( _◦ (prod× id)⇒ prod◦FamInj(_( _)◦dst : FamInj(Gs)×Gs →Gs.

For each Γ, we can then construct a natural isomorphism

distb,Γ : JΓKb
1 ◦ (prod× id)∼= prod◦FamInj(JΓKb

1)◦dst : FamInj(Gs)×MΘ
X →Gs

proceeding by induction on Γ:

• If b =− and Γ= ε then we require a natural isomorphism prod◦π1 ∼= prod◦FamInj(π1)◦
dst : FamInj(Gs)×MΘ

X →Gs. But it is clear that these functors are identical.

• If b =− and Γ= Γ′, M then we need a natural isomorphism JΓK◦ (prod× id) ∼= prod◦
FamInj(JΓK)◦dst. This is given by JΓK◦(prod×id)=®◦(JΓ′K×iJMK◦π2)◦∆◦(prod×id)=
®◦ (JΓ′K◦ (prod× id)× iJMK)◦ (id×∆MΘ

X
) ∼=dist−,Γ′ ®◦ (prod◦FamInj(JΓ′K)◦dst× iJMK)◦

(id×∆)=®◦(prod×id)◦(FamInj(JΓ′K)◦dst× iJMK)◦(id×∆)∼=dist® prod◦FamInj(®)◦dst◦
(FamInj(JΓ′K)◦dst× iJMK)◦(id×∆)= prod◦FamInj(®)◦FamInj(JΓ′K× iJMK)◦dst◦(dst×
id)◦(id×∆)= prod◦FamInj(®)◦FamInj(JΓ′K× iJMK◦(id×∆))◦dst= prod◦FamInj(Γ)◦dst.

• If b = − and Γ = Γ′,P then the transformation can be given similarly, using (

instead of ® and dist( instead of dist®.

If b = + the natural isomorphisms are given similarly, using ® for positive formulas in

the inductive step and ( for negative formulas.

Finally, given a sequent A,Γ we define distΓ as the following horizontal composition,

where b is the polarity of A. One can check pointwise that the functors are equal to the

given decompositions.

∀x.JA,ΓK :MΘ
X

〈addx, id〉- FamInj(MΘ
X]{x})×MΘ

X
FamInj(A)× id- FamInj(Gs)×MΘ

X
prod◦FamInj(JΓKb

1)◦dst
- Gs

J∀x.A,ΓK :MΘ
X

〈addx, id〉-

id

wwwwwwwww
FamInj(MΘ

X]{x})×MΘ
X

FamInj(A)× id-

id

wwwwwwwww
FamInj(Gs)×MΘ

X
JΓKb

1 ◦ (prod× id)
-

dist−1
b,Γ

wwwwwwww
Gs

Since distΓ is a natural isomorphism, and pointwise winning, it is an isomorphism in

W MΘ
X .

Proposition 4.2.8 πv(x) ◦distΓ(L,v) = JΓKb(πv(x))

Proof We can check this by induction on Γ, as in Proposition 2.3.5.



4.2.5 Semantics of Proofs

We give semantics of a proof of X ;Θ` M,Γ as a uniform winning strategy κI ⇒ JX ;Θ`
M,ΓK, and semantics of a proof of X ;Θ ` P,Γ as a uniform winning strategy JX ;Θ `
P,ΓK⇒ κ⊥.

We first introduce some notation. Suppose C is the coproduct of two categories D

and E (the disjoint union of the two categories, where there are no maps between them).

If F : C → Ge we write F|D and F|E for the restriction of F to D and E respectively. If

η : F ⇒ G then we can restrict η to a natural transformation F|D ⇒ G|D , and we write

η|D for this restriction. If η : F|D ⇒ G|D and σ : F|E ⇒ G|E then we write [η,σ]D,E for

the lax natural transformation defined by [η,σ]A = ηA if A ∈D and [η,σ]A =σA if A ∈ E .

Lax naturality of [η,σ] inherits from lax naturality of η and σ, since there are no maps

between D and E when viewed as subcategories of C .

We will sometimes abuse notation, writing [η,σ]D,E even when there are maps be-

tween D and E : we must then justify lax naturality of [η,σ]D,E directly. If C =MΘ
X then

we will write [η,σ]α,β for [η,σ]
M

Θ,α
X ,MΘ,β

X
.

First, we deal with the semantics of the rules from WS!. We need an interpretation

of each WS! rule: a transformation from the uniform winning strategies on each of the

premises, to a uniform winning strategy on the conclusion. The value of X ;Θ is constant

throughout. By Proposition 4.2.5, W MΘ
X is a WS!-category. Thus we can use the inter-

pretation of each WS! rule in this category. We next turn to the new rules.

Positive Atoms: For Pat+, we start with a lax natural transformation JpK : J>,ΓK⇒⊥
with functors mapping M

Θ,φ(−→s )
X →Ge. But for any (L,v) in M

Θ,φ(−→s )
X we have Jφ(−→s ),ΓK(L,v)=

J>,ΓK(L,v). Hence JpK : Jφ(−→s ),ΓK⇒⊥, and we take JPat+(p)K= JpK.

Negative Atoms: For the rule Pat−, suppose JpK : I ⇒ J⊥,ΓK with functors M
Θ,φ(−→s )
X →G .

Then set JPat−(p)K(L,v) = ε if (L,v) |= φ(−→s ) and JpK(L,v) if (L,v) |= φ(−→s ). In our above

notation, this is [JpK,ε]φ(−→s ),φ(−→s ).

For lax naturality, we need to check that the appropriate diagram lax commutes:

I
JPat−(p)K(M,w)

- Jφ(−→s ),ΓK(M,w)

w

I

id

?

JPat−(p)K(L,v)
- Jφ(−→s ),ΓK(L,v)

iJφ(−→s ),ΓK( f )

?

If (L,v) and (M,w) agree on φ(−→x ) then the diagram lax commutes by lax naturality



of ε or JpK. If they disagree, then we must have (L,v) |= φ(−→x ) and (M,w) |= φ(−→x ).

We need to show that JPat−(p)K(L,v) w iJφ(−→x ),ΓK( f ) ◦ JPat−(p)K(M,w). To see this, note

that pJφ(−→x ),ΓK( f )◦JPat−(p)K(L,v)= JPat−(p)K(M,w) as both sides map into the terminal

object, so JPat−(p)K(L,v) w iJφ(−→x ),ΓK( f ) ◦ pJφ(−→x ),ΓK( f ) ◦ JPat−(p)K(L,v) = iJφ(−→x ),ΓK( f ) ◦
JPat−(p)K(M,w).

Forall: Given a proof p of X ] {X };Θ ` N,Γ, then JpK : I → JN,ΓK in W MΘ
X]{x} . We can

construct ĴpK : I →∀x.JN,ΓK in W MΘ
X and set JP∀(p)K= dist−1

Γ ◦ ĴpK.

Exists: Consider the map set′xs (η) :∀x.F = set′xs (U ′
x(∀x.F))→ set′xs (F) in the category MΘ

X .

Pointwise, set′xs (η)(L,v) :
∏

l∈L F(L,v[x 7→ l]) → F(L,v[x 7→ v(s)]) is given by πv(s), and so we

will write πs for this map.

Given a proof p of X ;Θ` P[s/x],Γ with FV (s)⊆ X we have a map JpK : JP[s/x],ΓK→⊥
in W MΘ

X . Since x does not occur in Γ, the domain of this map is J(P,Γ)[s/x]K= set′xs (JP,ΓK).
Then we take JPs

∃(p)K= JpK◦πs ◦distΓ = JpK◦ JΓKb(πs) : J∀x.P,ΓK→⊥.

Inequality: Semantics of P6= is the empty family, as MΘ
X has no objects.

Match: For Px,y,z
ma , we first construct an isomorphism

Hx,y,z : MΘ,x=y
X

∼=M
Θ[ z

x , z
y ]

X /{x,y}]{z} : H−1
x,y,z

with Hx,y,z(M,v) = (M,v[z 7→ v(x)]− x− y) and H−1(M,v) = (M,v[x 7→ v(z), y 7→ v(z)]− z).

We can show that J(X ;Θ`Γ)[ z
x , z

y ]K= JX ;Θ, x = y`ΓKH−1
x,y,z by induction on Γ.

We set JPx,y,z
ma (p, q)K= [JpKHx,y,z,JqK]x=y,x 6=y. The component of Jpx,y,z

ma (p, q)K at (M,v)

is given by JpK if (M,v) |= x = y or JqK if (M,v) |= x 6= y.

Semantics of WS1 are given in Figure 4-3.

4.3 Full Completeness

We next show a full completeness result for the function-free fragment of WS1: we hence-

forth assume that L contains no function symbols. Thus, the only uses of the P∃ rule

are of the form Py
∃ where y is some variable in scope.

We show that the core rules suffice to represent any uniform winning strategy σ on

a type object provided σ is bounded — i.e. there is a bound on the size of plays occurring

in σ. In particular, such a strategy is the semantics of a unique analytic proof. If σ is not



bounded, then it is the semantics of a unique infinitary analytic proof. We extend our

reification procedure for WS! to WS1.

We assume some arbitrary linear ordering on V , which lifts lexicographically to V ×V .

Let Fr(X ;Θ ` Γ) denote V − (X ∪B(Γ)) where B(Γ) denotes the variables that are bound

in Γ.

Definition Given a sequent X ;Θ`Γ, Θ is lean if:

• Θ contains x 6= y for all distinct x and y in X

• Θ does not contain x 6= x for any variable x.

A proof in WS1 is analytic if it uses only core rules and has the following additional

restrictions:

• Rules other than P 6= and Px,y,z
ma can only conclude sequents with a lean Θ

• If Px,y,z
ma is used to conclude X ;Θ`Γ then X does not contain w 6= w for any w; (x, y)

is the least pair with x, y ∈ X , x 6≡ y and x 6= y 6∈ Θ; and z is the least variable in

Fr(X ;Θ`Γ) (the least fresh variable).

We will show:

Theorem 4.3.1 Let X ;Θ ` Γ be a sequent of WS1. If σ is a bounded uniform winning

strategy on JX ;Θ`ΓK then there is a unique analytic proof p of X ;Θ`Γ with JpK=σ.

We will also extend this result to reification of unbounded strategies as infinitary ana-

lytic proofs, as in Chapter 3. We can hence normalise proofs to their (possibly infinitary)

analytic form.

4.3.1 Uniform Choice

First, we show that for any uniform winning strategy, each component makes the same

choice (in some sense) when the outermost connective is ⊕ or ∃.

Proposition 4.3.2 If Θ is lean and (L,v), (M,w) ∈ MΘ
X there exists an L -model (L,v)t

(M,w) with maps f(L,v,M,w) : (L,v)→ (L,v)t(M,w) and g(L,v,M,w) : (M,w)→ (L,v)t(M,w).

Proof If (L,v) is an L -model, define U(L,v) to be the elements of |L| not in the image of

v. Then the carrier of (L,v)t (M,w) is defined to be X ]U(L,v)]U(M,w). The L -structure

validates all positive atoms, and the valuation is just inj1. Then the map f(L,v,M,w) sends

v(x) to inj1(x) and u ∈U(L,v) to inj2(u). This is an injection because Θ is lean. g(L,v,M,w) is

defined similarly.



We also recall that if f : (L,v) → (M,w) then σ(L,v) is determined entirely by f and

σ(M,w). In particular, uniformity for positive strategies σ : N ⇒⊥ requires that σ(L,v) v
σ(M,w) ◦N( f ) but since σ(L,v) is total, it is maximal in the ordering and so we must have

σ(L,v) =σ(M,w) ◦N( f ).

Proposition 4.3.3 Let X ;Θ`Γ be a sequent and suppose Θ is lean. Then there exists an

object in MΘ
X .

Proof Note that Θ just contains positive atoms. We can take (X , id), with (X , id) |=φ(−→x )

just if φ(−→x ) ∈Θ. Then each formula in Θ is satisfied: each such formula is either φ(−→x ),

or x 6= y for distinct x, y.

Proposition 4.3.4 Let M1, M2 : MΘ
X → Ge. Suppose Θ is lean, and let σ : M1 ×M2 ⇒⊥

be a uniform total (resp. winning) strategy. Then σ= τ◦π1 for some uniform total (resp.

winning) strategy τ : M1 ⇒⊥, or σ= τ◦π2 for some uniform total (resp. winning) strategy

τ : M2 ⇒⊥.

Proof We know that each σ(L,v) is of the form τ(L,v) ◦πi for some i ∈ {1,2} since in the

game M1(L,v)×M2(L,v)(⊥ we must respond to the initial Opponent-move either with

a move in M1 or a move in M2 (the π-atomicity condition). But we need to check that i

is uniform across components. Suppose that i is not uniform — then we have (L,v) and

(T,w) with σ(L,v) = τ(L,v) ◦π1 and σ(T,w) = τ(T,w) ◦π2. Now consider (L,v)t (T,w) and let k

be such that σ(L,v)t(T,w) = τ(L,v)t(T,w)◦πk. By uniformity and totality, σ(L,v) =σ(L,v)t(T,w)◦
(M1×M2)( f(L,v,T,w))= τ(L,v)t(T,w)◦πk◦(M1×M2)( f(L,v,T,w))= τ(L,v)t(T,w)◦Mk( f(L,v,T,w))◦πk.

But since σ(L,v) is of the form τ(L,v)◦π1, we must have k = 1. But we can reason similarly

using σ(T,w) and g(L,v,T,w) and discover that k = 2. This is a contradiction.

Thus there is some i such that each σ(L,v) can be decomposed into τ(L,v)◦πi. In partic-

ular, we can take i such that σ(X ,id) = τ(X ,id) ◦πi where (X , id) is as defined in Proposition

4.3.3. We only need to show that τ is lax natural. We can construct a natural transfor-

mations ι1 : 〈id,ε〉 : M1 → M1 ×M2 and ι2 : 〈ε, id〉 : M2 → M1 ×M2. Then τ=σ◦ ιi, and so is

lax natural.

Corollary 4.3.5 If Θ is lean, then W MΘ
X is a complete WS-category.

Proof We show that each of the conditions of complete WS-categories hold.

1a There are no maps I → ⊥. If there were, we could take its component at (X , id)

yielding a winning strategy on I (⊥, of which there are none.

1b Proposition 4.3.4 ensures that the π-atomicity axiom holds.

2 The map (_(⊥)−1 on W extends pointwise to W MΘ
X .



Proposition 4.3.6 Let M : MΘ
X]{x} → Ge. Suppose Θ is lean, and let σ : ∀x.M ⇒⊥ be a

uniform total (resp. winning) strategy. Then there exists a unique variable y ∈ X and

uniform total (resp. winning) strategy τ : Msetx
y ⇒⊥ such that σ= τ◦πy.

Proof We firstly show that given any L -model (L,v) there is some x with σ(L,v) = τ(L,v)◦
πv(x). Suppose for contradiction that σ(L,v) = τ(L,v) ◦πu for some u ∈U(L,v). Build the L -

model L′ = X ] {a,b}]U(L,v) with valuation inj1 and validating all positive atoms. Let

σ(L′,inj1) = τ(L′,inj1) ◦πr. Define m1 : (L,v)→ (L′, inj1) sending v(x) to inj1(x), u to inj2(a) and

y ∈U(L,v) − {u} to inj3(y). Then σ(L,v) =σ(L′,inj1) ◦πr ◦∀x.M(m1).

• If r = inj1(x) then this is σ(L′,inj1) ◦M(m1)◦πv(x), contradicting σ(L,v) = τ(L,v) ◦πu.

• If r = inj2(b) then this is σ(L′,inj1) ◦ ε which is ε as σ(L′,inj1) is strict (it is a total map

into ⊥). This is impossible as σ(L,v) is total.

• If r = inj3(y) then this is σ(L′,inj1) ◦M(m1)◦πy, , contradicting σ(L,v) = τ(L,v) ◦πu.

• Hence we must have r = inj2(a).

Define m2 : (L,v) → (L′, inj1) sending v(x) to inj1(x), u to inj2(b) and y ∈ U(L,v) − {u} to

inj3(y). We can use similar reasoning to show that r = inj2(b). This is a contradiction.

Hence, given any (L,v) there is some variable x such that σ(L,v) = τ(L,v) ◦πv(x). Let

y ∈ X be the unique variable such that σ(X ,id) = τ(X ,id) ◦πy where (X , id) is constructed

as in Proposition 4.3.3. We now show that for all (L,v), σ(L,v) = τ(L,v) ◦πv(y). Suppose

that σ(L,v) = τ(L,v) ◦πv(x) and σ(L,v)t(X ,id) = τ(L,v)t(X ,id) ◦πinj1(z). By lax naturality, τ(L,v) ◦
πv(x) = σ(L,v) = σ(L,v)t(X ,id) ◦∀x.M( f(L,v,X ,id)) = τ(L,v)t(X ,id) ◦πinj1(z) ◦∀x.M( f(L,v,X ,id)). Since

inj1(z) = f(L,v,X ,id)(v(z)), we have σ(L,v) = τ(L,v)t(X ,id) ◦ M( f(L,v,X ,id)) ◦πv(z) and so we must

have x = z. By similar reasoning using g(L,v,X ,id), we see that y= z, so x = y.

Hence there is a variable y such that for all (L,v), σ(L,v) = τ(L,v) ◦ πv(y) for some

τ(L,v) : M(L,v[x 7→ v(y)]) ⇒⊥. Since Θ is lean, y is the unique variable such that σ(L,v) =
τ(L,v) ◦πv(y). Note that M(L,v[x 7→ v(y)])= M(setx

y(L,v)). It only remains to show that the

resulting transformation τ : Msetx
y ⇒⊥ is lax natural.

Consider the transformation ρ : Msetx
y ⇒∀x.M : MΘ

X →Gs defined by ρ(L,v)= 〈gm〉m

where gm = ε if m 6= v(y) and gv(y) = id. We show that this is natural:

M(L,v)
ρL,v- ∀x.M(L,v)

M(M,w)

M( f )

?

ρM,w
- ∀x.M(M,w)

∀x.M( f )

?

We show πb ◦ρM,w ◦M( f )=πb ◦∀x.M( f )◦ρL,v for each b.



• If b 6= w(y) and is not in the image of f , then the LHS is ε◦M( f )= ε and the RHS is

ε◦ρL,v = ε as required.

• If b = f (a) 6= w(y) then the LHS is still ε, and the RHS is M( f )◦πa◦ρL,v. But a 6= v(y)

(since a = v(y)⇒ b = f (a)= w(y)) and so this is M( f )◦ε. Since M( f ) is strict, this is

ε, as required.

• If b = w(y) then the LHS is id ◦ M( f ) = M( f ) and the RHS is M( f ) ◦πv(y) ◦ ρA =
M( f )◦ id= M( f ) as required.

Finally, we can see that τ is lax natural because τ=σ◦ρ.

4.3.2 Reification Procedure

We next define a function reify from bounded uniform winning strategies on JX ;Θ ` ΓK
to proofs of X ;Θ ` Γ. This extends the procedure given in previous chapters. Again

it is defined by case analysis on the head of Γ, by induction on a compound measure

involving the size of the strategy, the number of pairs of free variables that are not

declared distinct by Θ, and a further measure which depends on the nature of the head

formula. Informally, if Θ is not lean:

• If Θ contains x 6= x we use P 6= and halt.

• Otherwise, we consider the least two variables x, y ∈ X that are not declared distinct

by Θ and split the family into those models that identify x and y, and those that do

not. In the former case, we can substitute fresh z for both x and y. We then apply

the inductive hypothesis to both halves and apply Px,y,z
ma using H−1

x,y,z.

If Θ is lean, then:

• If the head formula is not an atom or quantifiers, we proceed as with reification as

in Figure 3-7, using the fact that W MΘ
X is a complete WS-category.

• If the head formula is a positive atom φ(−→x ) then we must have φ(−→x ) in Θ, as other-

wise there can be no uniform winning strategies on JΓK (since some games in that

family have no winning strategies). Thus we can proceed inductively and apply

Pat+.

• If the head formula is a negative atom φ(−→x ) then we can split the family σ into

those models that satisfy φ(−→x ) and those that do not. All strategies in the former

set must be empty, as there are no moves to play. All strategies in the latter set

form a uniform winning strategy on JΘ,φ(−→x )`⊥,ΓK and we can proceed inductively

using Pat−.



• If σ : JX ;Θ`Γ=∀x.N,Γ′K then distΓ′ ◦σ : I ⇒∀x.JN,Γ′K. Using our adjunction, this

corresponds to a map η◦U ′
x(distΓ′ ◦σ) : I ⇒ JN,Γ′K in W MΘ

X]{x} . We can then reify this

inductively to yield a proof of X ] {x};Θ` N,Γ′ and apply P∀.

• If Γ=∃x.P,Γ′ then σ◦dist+,Γ′ :∀x.JP,Γ′K⇒⊥. By Proposition 4.3.6, there is a unique

y and natural transformation τ : JP,Γ′Ksetx
y ⇒⊥ such that σ◦dist+,Γ′ = τ◦πy. Since

x does not occur in Γ, we have JP,Γ′Ksetx
y = JP[y/x],Γ′K. This yields a lax natural

transformation JP[y/x],Γ′K⇒ ⊥. We can then apply the inductive hypothesis use

the Py
∃ rule.

We formally define reify for the new connectives in Figure 4-4. The other cases (with lean

Θ) are imported from Figure 3-7, using the fact that W MΘ
X is a complete WS!-category.

Remark Note that if σ : J{x, y};` ΓK then the reification procedure places both x 6= y

and y 6= x into the context, as either could (in principle) be required later in the proof.

Assuming z is least in Fr(X ;Θ ` Γ) and x 6 y in the ordering, reify(σ) is the following

proof:

reify(σ|
M

Θ,x=y
X

◦H−1
x,y,z)

{z};`Γ[ z
x , z

y ]

P 6= {z}; z 6= z `Γ[ z
x , z

y ]

reify(σ|
M

Θ,x 6=y
X

)

{x, y}; x 6= y, y 6= x `Γ
Py,x,z

ma {x, y}; x 6= y`Γ
Px,y,z

ma {x, y};`Γ

4.3.3 Termination

We next need to show that if σ is bounded then reify(σ) terminates. We can base our

measure on that given in Proposition 2.4.3, but we need to add an extra component to

our lexicographical measure to take into account the use of Pma to reduce the number of

distinct variables in X that are not declared distinct by Θ.

Again, the full completeness procedure first breaks down the head formula until it

is ⊥ or >. It then uses the core elimination rules to compose the tail into (at most) a

single formula. These steps do not increase the size of the strategy. Finally, the head is

removed using P+
⊥ or P−

>, strictly reducing the size of the strategy. If Θ is not lean, the

number of distinct variable pairs that are not declared distinct in Θ is reduced by using

Pma.

Formally, we can see this as a lexicographical ordering of four measures on σ,X ,Θ,Γ:

• The most dominant measure is the length of the longest play in σ.

• The second measure is the length of Γ as a list if the head of Γ is ⊥ or >, and ∞
otherwise.



• The third measure is the size of the head formula of Γ.

• The fourth measure is

L(X ,Θ)= |{(x, y) ∈ X × X : x 6≡ y∧ x 6= y ∉Θ}|.

If Θ is lean:

• If Γ = ⊥,P or >, N then the first measure decreases in the call to the inductive

hypothesis.

• Otherwise, if Γ = A,Γ′ with A ∈ ⊥,> the first measure does not increase and the

second measure decreases.

• If Γ= A,Γ′ with A 66∈ {⊥,>}, the first measure does not increase and either the second

or third measure decreases.

If Θ is not lean and the Pma rule is applied, in the call to the inductive hypotheses

the first three measures stay the same and the fourth measure decreases.

Thus, the inductive hypothesis is used with a smaller value in the compound mea-

sure on N×N∪ {∞}×N×N ordered lexicographically.

4.3.4 Soundness and Uniqueness

Proposition 4.3.7 Given any bounded uniform winning strategy σ : JX ;Θ`ΓK, Jreify(σ)K=
σ.

Proof We proceed by induction on our termination measure. For the constructs that

appear in WS!, we can proceed as in Proposition 3.6.1, since W MΘ
X is a complete WS!-

category. For the new cases:

• If Θ is not lean and x 6= x ∈Θ then we must have Jreify(σ)K=σ as there is a unique

uniform winning strategy on this functor (the empty family).

• If Θ is not lean with (x, y) ∈ X × X least such that x 6≡ y and (x 6= y) 6∈Θ and z is the

least element in Fr(X ;Θ`Γ), then Jreify(σ)K
= JPx,y,z

ma (reify(σ|
M

Θ,x=y
X

◦H−1
x,y,z,reify(σ|

M
Θ,x 6=y
X

)K
= [Jreify(σ|

M
Θ,x=y
X

◦H−1
x,y,z)KHx,y,z,Jreify(σ|

M
Θ,x 6=y
X

)K]x=y,x 6=y

= [σ|
M

Θ,x=y
X

◦H−1
x,y,z ◦Hx,y,z,σ|

M
Θ,x 6=y
X

]x=y,x 6=y

= [σ|
M

Θ,x=y
X

,σ|
M

Θ,x 6=y
X

]x=y,x 6=y =σ.

• If Γ=φ(−→x ),Γ′ then Jreify(σ)K= JPat+(reify>,Γ′(σ))K= Jreify>,Γ′(σ)K=σ.

• If Γ = φ(−→x ),Γ′ then Jreify(σ)K = JPat−(σ|
M

Θ,φ(−→x )
X

)K = [σ|
M

Θ,φ(−→x )
X

,ε]φ(−→x ),φ(−→x ) = σ as we

must have σ|
M

Θ,φ(−→x )
X

= ε since Jφ(−→x ),ΓKA is the terminal object for each A in M
Θ,φ(−→x )
X .



• If Γ=∀x.N,Γ′ then Jreify(σ)K= JP∀(reify(η◦U ′
x(distΓ′ ◦σ)))K=

dist−1
Γ′ ◦ áJreify(η◦U ′

x(distΓ′ ◦σ))K = dist−1
Γ′ ◦ á(η◦U ′

x(distΓ′ ◦σ)) = dist−1
Γ′ ◦distΓ′ ◦σ = σ as

required.

• If Γ=∃x.P,Γ′ then Jreify(σ)K= JPy
∃(reify(τ))Kwhere σ◦dist−1

Γ′ = τ◦πy. This is Jreify(τ)K◦
πy ◦distΓ′ = τ◦πy ◦distΓ′ =σ◦dist−1

Γ′ ◦distΓ′ =σ as required.

Proposition 4.3.8 For any analytic proof p, reify(JpK)= p.

Proof Induction on p. If the final rule used in p was a rule of WS! (used necessarily

with lean Θ) we can proceed as in Proposition 3.6.2, noting that W MΘ
X is a complete

WS!-category. Thus, we concentrate on the new rules.

• If p =P 6= then we have x 6= x in Θ, and so reifyX ,Θ`Γ(JpK)=P6= as required.

• If p =Px,y,z
ma (p1, p2) with (x, y) ∈ X × X least such that x 6≡ y and (x 6= y) 6∈Θ and z is

the least element in Fr(X ;Θ ` Γ), then reify(JpK) = reify([Jp1KHx,y,z,Jp2K]x=y,x 6=y) =
Px,y,z

ma (reify([Jp1KHx,y,z,Jp2K]x=y,x 6=y|x=y ◦H−1
x,y,z),reify([Jp1KHx,y,z,Jp2K]x=y,x 6=y|x 6=y))=

Px,y,z
ma (reify(Jp1K),reify(Jp2K))=Px,y,z

ma (p1, p2)= p as required.

• If p =Pat+(q) then reify(JpK)=Pat+(reify(JqK))=Pat+(q)= p as required.

• If p =Pat−(q) then reify(JpK)= reify([JqK,ε]φ(−→x ),φ(−→x ))=Pat−(reify([JqK,ε]φ(−→x ),φ(−→x )|φ(−→x )))=
Pat−(reify(JqK))=Pat−(q)= p as required.

• If p = Py
∃(q) then reify(JpK) = reify(JqK ◦πy ◦ distΓ′). Since JqK ◦πy ◦ distΓ′ ◦ distΓ′ =

JqK◦πy, this is Py
∃(reify(JqK))=Py

∃(q)= p as required.

• If p =P∀(q) then reify(JpK)= reify(dist−1
Γ′ ◦ ˆJqK)=P∀(reify(η◦U ′

x(distΓ′ ◦dist−1
Γ′ ◦ ˆJqK)))=

P∀(reify(η◦U ′
x( ˆJqK)))=P∀(reify(JqK))=P∀(q)= p as required.

We thus see that for any bounded σ, reify(σ) is the unique analytic proof p such that

JpK=σ.

4.4 Proof Normalisation

We can extend our full completeness procedure to unbounded uniform total strategies,

yielding infinitary analytic proofs. We can then normalise proofs in WS1 to their infini-

tary analytic forms. The treatment follows that in Section 3.7, and we describe how this

approach can be extended to deal with WS1.

• The definition of infinitary analytic proof of WS1 follows the definitions in Section

3.7. In particular, we can formulate IΓ using a final coalgebra (note that the set

Seq now includes the X ;Θ component). Alternatively, we can consider the set of



infinitary analytic proofs as the limit of the analytic paraproofs, which are analytic

proofs in WS1 with access to a diamon rule Pε that can prove any sequent.

• We can give semantics of an analytic paraproof of X ;Θ`Γ as a uniform strategy on

JX ;Θ ` ΓK. For the rules of WS!, we use the fact that GMΘ
X is a WS!-category. We

can interpret the new rules P∀, Py
∃ , Pma, P6=, Pat+, Pat− as given in Figure 4-3: the

lack of winningness causes no problems.

• We can extend these semantics to infinitary analytic proofs of WS1.

– To do this, note that GMΘ
X is cpo-enriched, inheriting pointwise from G . As be-

fore, the semantic operation J−K mapping CX ;Θ`Γ to the set of uniform strate-

gies on JX ;Θ` ΓK is monotonic. We can thus define the semantics of an infini-

tary analytic proof as the limit of its finite approximants.

– We can show that these semantics agree with those given in Figure 4-3 be-

cause the underlying semantic operations are continuous. First, composition,

currying and pairing in GMΘ
X are continuous. Then we note that if σ and τ are

continuous so is [σ,τ] and σH for any functor H. Finally, we can show that the

−̂ operation on uniform strategies is continuous by considering the pointwise

definition and noting that arbitrary tupling is continuous.

– We can show that the resulting uniform strategy is total by showing that, for

each A and n, σA is n-total. This is by lexicographic induction on

〈n,tl+(Γ),hd+(Γ),tl−(Γ),hd−(Γ),L(X ,Θ)〉

and we proceed as in Proposition 3.7.4. For the new cases, we can check that

[_,_], _̂ and _◦H preserve n-totality.

• We can reify uniform total strategies as infinitary analytic proofs using the coal-

gebraic formulation as in Section 3.7: our definition reify is still of the required

shape.

• We can show that Jreify(σ)K=σ by showing that, for each n and A, σA =n Jreify(σA)K.
This is by lexicographic induction on

〈n,tl+(Γ),hd+(Γ),tl−(Γ),hd−(Γ),L(X ,Θ)〉

and we can proceed as in Proposition 3.7.7. For the new cases, we can check that

[_,_], ∀x._ and _◦H respect =n.

• We can show that reify(JpK)= p by showing that reify◦ J−K=$α%= id, as in Propo-

sition 3.7.8. The remaining equations required to do so are verified in Proposition

4.3.8.



We can conclude that uniform total strategies on JX ;Θ ` ΓK are in bijective correspon-

dence with infinitary analytic proofs of X ;Θ`Γ, via the semantics. Thus given any proof

p of X ;Θ ` Γ in WS1 we can compute reify(JpK), which is the unique infinitary analytic

proof whose semantics is JpK. Thus, two proofs are semantically equivalent if and only

if they have the same infinitary normal form.

4.5 Cut Elimination

In Sections 2.5.1 and 3.8.1 we defined a syntactic cut elimination procedure for analytic

proofs. We now extend this to WS1. Specifically, given an analytic proof X ;Θ` A,Γ, N⊥

and an analytic proof of X ;Θ` N,P we can construct an analytic proof of X ;Θ` A,Γ,P.

4.5.1 Cut Elimination Procedure

As a starting point, we take the procedures defined in Figure 3-8 and note we can expand

them to propagate X ;Θ contexts additively. We hence only need to define cut and cut2

on the new core proof rules.

To do this, we first define some (additional) auxiliary procedures.

• A procedure wkψ(−→s ), which takes a proof of X ;Θ`Γ and produces a proof of X ;Θ,ψ(−→s )`
Γ. This can be given using a trivial induction. Then Jwkψ(−→s )(p)K= JpKJψ(−→s ) where

Jψ(−→s ) : MΘ,ψ(−→s )
X →MΘ

X is the inclusion functor.

• We can similarly give a procedure wkx extracting a proof of X ] {x};Θ ` Γ from a

proof of X ;Θ ` Γ. We have Jwkx(p)K = JxKUx where Ux : MΘ
X]{x} → MΘ

X forgets the

valuation at x.

• We can define a substitution procedure. Suppose p is a proof of X ] {x},Θ` Γ with

free variables of s in X . Then we can give a proof ps
x of X ,Θ[s/x]` Γ[s/x] by replac-

ing all occurrences of x in p by s. We have Jps
xK= JpKsets

y.

We then extend the procedures from Figure 3-8 to WS1 in Figures 4-5, 4-6, 4-7. For

termination, we need to use the fact that the weakening and substitution operations

preserve the size of the proof, so that the termination argument given in Section 2.5.1

still applies.

4.5.2 Soundness

We next show that this procedure is sound with respect to the interpretation in W MΘ
X .

Note that f ◦ [σ,τ] = [ f ◦σ, f ◦ τ] and [σ,τ] ◦ f = [σ ◦ f ,τ ◦ f ]. If f is strict, we have

f ◦ [σ,ε]= [ f ◦σ,ε]. Finally, Λ(−1)([σ,τ])= [Λ(−1)(σ),Λ(−1)(τ)].



Proposition 4.5.1 wkP is sound — that is, if p is a proof of ` A,Γ then JwkP (p)K =
JP+

wk(p)K. (This is (af ( id)◦unit−1
( ◦ JpK if A is negative and JpK◦unit® ◦ (id®af) if A is

positive.).

Proof We proceed by induction on p. For the cases where p is a rule of WS!, we can use

Proposition 3.8.1 as W MΘ
X is a WS!-category. We only need to check the new cases, many

of which are similar to those in Proposition 2.5.4.

• If p =P 6= then the result holds trivially as the empty family is the only map of the

required type.

• If p =Px,y,z
ma (p1, p2) then Jwk(p)K= [Jwk(p1)KHx,y,z,Jwk(p2)K]. If A is negative, then

this is [(af ( id) ◦ unit−1
( ◦ Jp1KHx,y,z, (af ( id) ◦ unit−1

( ◦ Jp2K] = (af ( id) ◦ unit−1
( ◦

[Jp1KHx,y,z,Jp2K]= (af( id)◦unit−1
( ◦ JpK. If A is positive we proceed similarly.

• If p =Pat−(q) then Jwk(p)K= JPat−(wk(q))K= [Jwk(q)K,ε]= [(af( id)◦unit−1
( ◦JqK,ε]=

(af ( id) ◦ unit−1
( ◦ [JqK,ε] = (af ( id) ◦ unit−1

( ◦ JPat−(q)K = (af ( id) ◦ unit−1
( ◦ JpK as

required.

• If p = Pat+(q) then Jwk(p)K= Jwk(q)K= JqK◦unit® ◦ (id®af) = JpK◦unit® ◦ (id®af) as

required.

• If p = P∀(q) then Jwk(p)K = dist−1
Γ,P ◦ áJwk(q)K = dist−1

Γ,P ◦ á((af( id)◦unit−1
( ◦ JqK). We

must show that this is equal to (af ( id)◦unit−1
( ◦dist−1

Γ ◦ ˆJqK and so it is sufficient

to show that distΓ,P ◦ (af( id)◦unit−1
( ◦dist−1

Γ ◦ ˆJqK= á((af( id)◦unit−1
( ◦ JqK). By the

universal property, it is sufficient to show that η◦U ′
x(distΓ,P◦(af( id)◦unit−1

(◦dist−1
Γ ◦

ˆJqK)= (af( id)◦unit−1
(◦JqK. But the LHS is πx◦distΓ,P◦(af( id)◦unit−1

(◦dist−1
Γ ◦ ˆJqK=

(id( JΓK−(πx))◦ (af ( id)◦unit−1
( ◦dist−1

Γ ◦ ˆJqK= (af ( id)◦unit−1
( ◦ JΓK−(πx)◦dist−1

Γ ◦
ˆJqK= (af( id)◦unit−1

( ◦πx ◦ ˆJqK= (af( id)◦unit−1
( ◦ JqK as required.

• If p =Ps
∃(q) then Jwk(p)K= JPs

∃(wk(q))K= Jwk(q)K◦πs ◦distΓ,P = JqK◦unit® ◦ (id®af)◦
πs ◦distΓ,P = JqK◦unit® ◦ (id®af)◦ JΓ,PK+(πs) = JqK◦unit® ◦ (id®af)◦ (JΓK+(πs)® id) =
JqK◦ JΓK+(πs)◦unit® ◦ (id®af)= JpK◦unit® ◦ (id®af) as required.

Proposition 4.5.2 rem0 is sound — that is, if p is a proof of ` A,Γ then Jrem0(p)K =
unit( ◦ JpK if A is negative and JpK◦unit−1

® if A is positive.

Proof We proceed by induction on p. For the cases where p is a rule of WS!, we can use

Proposition 3.8.1 as W MΘ
X is a WS!-category. We only need to check the new cases, many

of which are similar to those in Proposition 2.5.2.

• If p =P 6= then the result holds trivially as the empty family is the only map of the

required type.



• If p =Px,y,z
ma (p1, p2) then Jrem0(p)K= [Jrem0(p1)KHx,y,z,Jrem0(p2)K]. If A is negative,

then this is [unit(◦Jp1KHx,y,z,unit(◦Jp2K]= unit(◦[Jp1KHx,y,z,Jp2K]= unit(◦JpK.
If A is positive we proceed similarly.

• If p = Pat−(q) then Jrem0(p)K = JPat−(rem0(q))K = [Jrem0(q)K,ε] = [unit( ◦ JqK,ε] =
unit( ◦ [JqK,ε]= unit( ◦ JPat−(q)K= unit( ◦ JpK as required.

• If p =Pat+(q) then Jrem0(p)K= Jrem0(q)K= JqK◦unit−1
® = JpK◦unit−1

® as required.

• If p = P∀(q) then Jrem0(p)K = dist−1
Γ ◦ áJrem0(q)K = dist−1

Γ ◦ á(unit( ◦ JqK). We must

show that this is equal to unit( ◦ dist−1
Γ,0 ◦ ˆJqK and so it is sufficient to show that

distΓ◦unit(◦dist−1
Γ,0◦ ˆJqK= á(unit( ◦ JqK). By the universal property, it is sufficient to

show that η◦U ′
x(distΓ ◦unit( ◦dist−1

Γ,0 ◦ ˆJqK)= unit( ◦ JqK. But the LHS is πx ◦distΓ ◦
unit( ◦dist−1

Γ,0 ◦ ˆJqK= JΓK−(πx)◦unit( ◦dist−1
Γ,0 ◦ ˆJqK= unit( ◦ (id( JΓK−(πx))◦dist−1

Γ,0 ◦
ˆJqK= unit( ◦ (JΓ,0K−(πx))◦dist−1

Γ,0 ◦ ˆJqK= unit( ◦πx ◦ ˆJqK= unit( ◦ JqK as required.

• If p =Ps
∃(q) then Jrem0(p)K= JPs

∃(rem0(q))K= Jrem0(q)K◦πs ◦distΓ = JqK◦unit−1
® ◦πs ◦

distΓ = JqK◦unit−1
® ◦JΓK+(πs)= JqK◦ (JΓK+(πs)® id)◦unit−1

® = JqK◦JΓ,0K+(πs)◦unit−1
® =

JpK◦unit−1
® as required.

Proposition 4.5.3 If p1 is a proof of ` A,Γ, N⊥ and p2 is a proof of ` N,R then Jcut(p1, p2)K=
JPcut(p1, p2)K. That is,

• Jcut(p1, p2)K=ΛI (Λ−1
I (Jp1K)◦Λ−1

I (Jp2K)) if A is negative.

• Jcut(p1, p2)K= Jp1K◦ (id®Λ−1
I Jp2K) if A is positive.

• Jcut2(p1, p2)K= Jp1K◦wk◦ sym◦ (id⊗Λ−1
I Jp2K).

Proof Since W MΘ
X is a WS!-category, we can use Proposition 3.8.1 for all of the cases

from WS!. We thus only need to check the new cases. For cut:

• For sequents with a negative head, Jcut(P 6=,P 6=)K = ΛI (Λ−1
I (JP 6=K) ◦Λ−1

I (JP6=K)) as

there is only one map of the required type as the family is empty. Similar for

sequents with a positive head.

• For sequents with a negative head, Jcut(Px,y,z
ma (p1, q1),Px,y,z

ma (p2, q2))K=
JPx,y,z

ma (cut(p1, p2),cut(q1, q2))K= [Jcut(p1, p2)KH,Jcut(q1, q2)K]=
[ΛI (Λ−1

I (Jp1K)◦Λ−1
I (Jp2K))H,ΛI (Λ−1

I (Jq1K)◦Λ−1
I (Jq2K))]=

ΛI [Λ−1
I (Jp1K)◦Λ−1

I (Jp2K)H,Λ−1
I (Jq1K)◦Λ−1

I (Jq2K)]=
ΛI [Λ−1

I (Jp1K)H,Λ−1
I (Jq1K)]◦ [Λ−1

I (Jp2K)H,Λ−1
I (Jq2K)]=

ΛI (Λ−1
I [Jp1KH,Jq1K]◦Λ−1

I [Jp2KH,Jq2K])=
ΛI (Λ−1

I (JPx,y,z
ma (p1, q1)K)◦Λ−1

I (JPx,y,z
ma (p2, q2)K)) as required.

The reasoning is similar for sequents with a positive head.



• Jcut(Pat−(p), q)K= JPat−(cut(p,wkφ(q)))K= [Jcut(p,wkφ(q))K,ε]
= [ΛI (Λ−1

I (JpK)◦Λ−1
I (Jwkφ(q)K)),ε]

= [ΛI (Λ−1
I (JpK)◦Λ−1

I (Jwkφ(q)K)),ΛI (Λ−1
I (ε)◦Λ−1

I (Jwkφ(q)K))]
=ΛI [Λ−1

I (JpK)◦Λ−1
I (Jwkφ(q)K),Λ−1

I (ε)◦Λ−1
I (Jwkφ(q)K)]

=ΛI [Λ−1
I (JpK),Λ−1

I (ε)]◦Λ−1
I (Jwkφ(q)K)

=ΛI (Λ−1
I ([JpK,ε]◦Λ−1

I (Jwkφ(q)K)
=ΛI (Λ−1

I (JPat−(p)K)◦Λ−1
I (JqK)) as required.

• Jcut(Pat+(p), q)K= JPat+(cut(p, q))K= Jcut(p, q)K= JpK◦(id®Λ−1
I (JqK)= JPat+(p)K◦(id®

Λ−1
I (JqK) as required.

• Jcut(P∀(p), q)K= JP∀(cut(p,wkx(q)))K=
dist−1

Γ,N⊥ ◦ áJcut(p,wkx(q))K= dist−1
Γ,N⊥ ◦ áΛI (Λ−1

I (JpK)◦Λ−1
I (U ′x(JqK))). We need to show

that this is equal to ΛI (Λ−1
I (dist−1

Γ,P ◦ ˆJpK) ◦Λ−1
I (JqK)) and so it is sufficient to show

that distΓ,N⊥ ◦ΛI (Λ−1
I (dist−1

Γ,P ◦ ˆJpK)◦Λ−1
I (JqK))= áΛI (Λ−1

I (JpK)◦Λ−1
I (U ′x(JqK))) and by

the universal property it is sufficient to show that η◦U ′
x(distΓ,N⊥ ◦ΛI (Λ−1

I (dist−1
Γ,P ◦

ˆJpK)◦Λ−1
I (JqK)))=ΛI (Λ−1

I (JpK)◦Λ−1
I (U ′x(JqK))). The LHS is πx◦distΓ,N⊥◦ΛI (Λ−1

I (dist−1
Γ,P◦

ˆJpK)◦Λ−1
I (JqK))= JΓ, N⊥K−(πx)◦ΛI (Λ−1

I (dist−1
Γ,P◦ ˆJpK)◦Λ−1

I (JqK))=ΛI (JΓK−(πx)◦Λ−1
I (dist−1

Γ,P◦
ˆJpK)◦Λ−1

I (JqK))=ΛI (Λ−1
I (πx◦ ˆJpK)◦Λ−1

I (JqK))=ΛI (Λ−1
I (πx◦ ˆJpK)◦Λ−1

I (U ′
x(JqK))) as re-

quired.

• Jcut(Ps
∃(p), q)K = JPs

∃(cut(p, q))K = Jcut(p, q)K ◦πs ◦distΓ,P = JpK ◦ (id®Λ−1
I (JqK)) ◦πs ◦

distΓ,P = JpK◦ (id®Λ−1
I (JqK))◦JΓ,PK+(πs)= JpK◦ (id®Λ−1

I (JqK))◦ (JΓK+(πs)® id)= JpK◦
(JΓK+(πs)®id)◦(id®Λ−1

I (JqK))= JpK◦JΓ, N⊥K+(πs)◦(id®Λ−1
I (JqK))= JpK◦πs◦distΓ,N⊥ ◦

(id®Λ−1
I (JqK))= JPs

∃(p)K◦ (id®Λ−1
I (JqK)) as required.

For cut2:

• Jcut(P 6=,P 6=)K =ΛI (Λ−1
I (JP 6=K) ◦Λ−1

I (JP6=K)) as there is only one map of the required

type as the family is empty.

• Jcut2(Px,y,z
ma (p1, q1),Px,y,z

ma (p2, q2))K= JPx,y,z
ma (cut2(p1, p2),cut2(q1, q2))K=

[Jcut2(p1, p2)KH,Jcut2(q1, q2)K] = [Jp1K ◦wk ◦ sym ◦ (id⊗Λ−1
I Jp2K)H,Jq1K ◦wk ◦ sym ◦

(id⊗Λ−1
I Jq2K)] = [Jp1KH,Jq1K] ◦wk ◦ sym ◦ (id⊗Λ−1

I [Jp2KH,Jq2K]) = JPx,y,z
ma (p1, q1)K ◦

wk◦ sym◦Λ−1
I (JPx,y,z

ma (p2, q2)K) as required.

• Jcut2(Pat+(p),Pat−(q))K= Jcut2(p, q)K= JpK◦wk◦ sym◦ (id⊗Λ−1
I JqK) = JPat+(p)K◦wk◦

sym◦(id⊗Λ−1
I JPat−(q)K) as required. We know that JqK= JPat−(q)K as we must have

φ ∈Θ for the appropriate atom and so [JqK,ε]φ,φ = JqK.
• Jcut2(Ps

∃(p),P∀(q))K= Jcut2(p, qs
x)K= JpK◦wk◦ sym◦ (id⊗Λ−1

I (Jqs
xK))= JpK◦wk◦ sym◦

(id⊗Λ−1
I (set′xs (JqK))). We must show that this is equal to JpK◦πs◦distΓ,N⊥ ◦wk◦sym◦

(id⊗Λ−1
I (dist−1

Γ,P ◦ ˆJqK). The latter is JpK◦ (JΓK+(πs)® id)◦wk◦ sym◦ (id⊗Λ−1
I (dist−1

Γ,P ◦



ˆJqK)= JpK◦wk◦ sym◦ (id⊗JΓK+(πs)◦Λ−1
I (dist−1

Γ,P ◦ ˆJqK))= JpK◦wk◦ sym◦ (id⊗Λ−1
I (πs ◦

ˆJqK))= JpK◦wk◦ sym◦ (id⊗Λ−1
I (set′xs (JqK))) as required.

4.6 Axioms

As well as using WS1 as a general first-order logic, we can introduce rules and axioms

based on a specific intended model. For example, if we fix L to be a language about

natural numbers (with constants including zero 0, and successor s) we can introduce an

induction rule:

X ;Θ` N[0/x] X ] {x};Θ` N[s(x)/x], N⊥

X ;Θ`∀x.N

We can interpret formulas as families of games varying over the Θ-satisfying valuation

only, and proofs as families of winning strategies — there is an evident interpretation

of the above rule. We will next use these ideas as a tool for giving specifications on

programs in WS1.



Figure 4-3: Semantics for WS1 — extends Figure 3-6

σ : JX ;Θ,φ(−→s )`⊥,ΓK
Pat−

[σ,ε]φ(−→s ),φ(−→s ) : JX ;Θ`φ(−→s ),ΓK

σ : JX ;Θ,φ(−→s )`>,ΓK
Pat+

σ : JX ;Θ,φ(−→s )`φ(−→x ),ΓK

σ : J(X ;Θ`Γ)[ z
x , z

y ]K τ : JX ;Θ, x 6= y`ΓK
Px,y,z

ma [σHx,y,z,τ]x=y,x 6=y : JX ;Θ`ΓK
P 6= ; : JX ;Θ, x 6= x `ΓK

σ : JX ] {x};Θ` N,ΓK
P∀ x 6∈ FV (Θ,Γ)

dist−1
Γ ◦ σ̂ : JX ;Θ`∀x.N,ΓK

σ : JX ;Θ` P[s/x],ΓK
Ps
∃ FV (s)⊆ X
σ◦πs ◦distΓ : JX ;Θ`∃x.P,ΓK

σ : JX ;Θ` M,Γ,∀x.N,∆K
PT
∀ FV (s)⊆ X
J∆K−(id®πs)◦σ : JX ;Θ` M,Γ, N[s/x],∆K

σ : JX ;Θ`Q,Γ,∀x.N,∆K
PT
∀ FV (s)⊆ X

σ◦ J∆K+(πs ( id) : JX ;Θ`Q,Γ, N[s/x],∆K

σ : JX ;Θ` M,Γ,P[s/x],∆K
PT
∃ FV (s)⊆ X
J∆K−(πs ( id)◦σ : JX ;Θ` M,Γ,∃x.P,∆K

σ : JX ;Θ`Q,Γ,P[s/x],∆K
PT
∃ FV (s)⊆ X

σ◦ J∆K+(id®πs) : JX ;Θ`Q,Γ,∃x.P,∆K

σ : JX ;Θ, s 6= t `ΓK
Pfneq

σ|s 6=t : JX ;Θ, f (s) 6= f (t)`ΓK



Figure 4-4: Reification of Strategies — extends Figure 3-7

For non-lean Θ:
reifyX ,x 6=x;Θ`Γ(σ) = P 6=
reifyX ,x,y;Θ`Γ(σ) = Px,y,z

ma (reify(σ|
M

Θ,x=y
X

◦H−1
x,y,z),reify(σ|

M
Θ,x 6=y
X

))

if (x, y) ∈ X × X is least such that x 6≡ y and (x 6= y) 6∈Θ
and z is the least element in Fr(X ;Θ`Γ)

For lean Θ:
reifyX ;Θ`φ(−→x ),Γ(σ) = Pat−(reify(σ|

M
Θ,φ(−→x )
X

))

reifyX ;Θ`φ(−→x ),Γ(σ) = Pat+(reify(σ))
reifyX ;Θ`∀x.N,Γ(σ) = P∀(reify(η◦U ′

x(distΓ′ ◦σ))
reifyX ;Θ`∃x.N,Γ(σ) = Py

∃(reify(τ)) where σ◦dist−1
Γ = τ◦πy

Figure 4-5: Cut Elimination Procedure (wkP for atoms and quantifiers)

wkP (P 6=) = P 6=
wkP (Px,y,z

ma (p, q)) = Px,y,z
ma (wkP (p),wkP (q))

wkP (Pat−(p)) = Pat−(wkP (p))
wkP (Pat+(p)) = Pat+(wkP (p))
wkP (P∀(p)) = P∀(wkP (p))
wkP (Ps

∃(p)) = Ps
∃(wkP (p))

Figure 4-6: Cut Elimination Procedure (rem0 for atoms and quantifiers)

rem0(P6=) = P6=
rem0(Px,y,z

ma (p, q)) = Px,y,z
ma (rem0(p),rem0(q))

rem0(Pat−(p)) = Pat−(rem0(p))
rem0(Pat+(p)) = Pat+(rem0(p))
rem0(P∀(p)) = P∀(rem0(p))
rem0(Ps

∃(p)) = Ps
∃(rem0(p))



Figure 4-7: Cut Elimination Procedure (cut for atoms and quantifiers)

cut : X ;Θ` A,Γ, N⊥× X ;Θ` N,P → X ;Θ` A,Γ,P
cut(P 6=,P 6=) = P 6=
cut(Px,y,z

ma (p1, q1),Px,y,z
ma (p2, q2)) = Px,y,z

ma (cut(p1, p2),cut(q1, q2))
cut(Pat−(p), q) = Pat−(cut(p,wkφ(q)))
cut(Pat+(p), q) = Pat+(cut(p, q))
cut(P∀(p), q) = P∀(cut(p,wkx(q)))
cut(Ps

∃(p), q) = Ps
∃(cut(p, q))

cut2 : X ;Θ`Q,Γ, N⊥× X ;Θ`Q⊥,Γ⊥,P → X ;Θ` N⊥OP
cut2(P6=,P6=) = P 6=
cut2(Px,y,z

ma (p1, q1),Px,y,z
ma (p2, q2)) = Px,y,z

ma (cut2(p1, p2),cut2(q1, q2))
cut2(Pat+(p),Pat−(q)) = cut2(p, q)
cut2(Py

∃(p),P∀(q)) = cut2(p, qy
x)

Figure 4-8: Diagram notation for elimination of cut in WS1

X ] {x};Θ` M,Γ, N⊥

X ;Θ`∀x.M,Γ, N⊥ X ;Θ` N,P
cut X ;Θ`∀x.M,Γ,P

7→

X ] {x};Θ` M,Γ, N⊥
X ;Θ` N,P

wkx X ] {x};Θ` N,P
cut X ] {x};Θ` M,Γ,P

X ;Θ`∀x.M,Γ,P



Chapter 5

Programs and their Properties

In this chapter we embed imperative total programming languages into an extension of

WS1 with an infinite choice operator. Example programs include objects representing a

postfix calculator and a data-independent set. We show how we can use our logic to rep-

resent properties of these programs.

In this chapter we shall demonstrate the expressivity of WS1 with respect to pro-

grams and properties upon them. As described in Section 3.4.3, we can interpret recursion-

free Idealized Algol over finitary data types in WS1, using the embedding of Intuition-

istic Linear Logic and the Boolean cell described in Figure 3-3. In this chapter we will

make this embedding explicit, and show how further features can be embedded, such as:

• Call-by-value

• Coroutines

• Infinitely deep state, e.g. stacks

• Natural numbers

• For loops

• Data-independent ground types.

We will also use the first-order structure in WS1 to represent a large collection of pro-

gram properties as formulas of WS1.

First, we will recall the standard embeddings of CBN and CBV lambda calculi into

LLP. By composing these embeddings with the embedding of LLP inside WS1 given in

Section 3.4.4, we obtain an embedding of these calculi into WS1.

We can extend the call-by-value calculus with imperative features: ground store,

coroutines, and an encaps operator which reflects the anamorphism rule of WS1. The

latter can be used to represent a limited form of higher-order store and some infinite



data structures (e.g. a stack of Booleans, following Section 3.4.3). We extend the CBV

embedding into WS1 with these features.

We next extend WS1 with a game representing natural numbers: this is straightfor-

ward, and the results from previous chapters can also be extended. Using this, we give

an embedding of a call-by-name imperative total programming language with a natural

number ground type in our logic. This language contains the imperative features above,

and all primitive recursive functions can be defined. The language is expressive: for ex-

ample, one can define a stateful object representing an (arbitrarily large) set of natural

numbers. Thus we see that the programming expressivity of WS1 is high.

We then show how the first-order structure can be used to formulate a large range of

behavioural properties on these programs. Finally, we show how the first-order structure

can be used in a different way: by relating each unary predicate to an atomic type, we

can write programs that are independent of the underlying ground types (e.g. a data-

independent set).

5.1 Finitary Lambda Calculi

In this section, we will show how finitary call-by-name and call-by-value lambda calculi

can be embedded inside WS1. We achieve this by composing their standard embeddings

into LLP with the embedding of LLP inside WS! given in in Section 3.4.4.

5.1.1 A Calculus of Finite Types

We first describe a calculus of finite types. We can equip this calculus with call-by-name

or call-by-value operational semantics at will.

The types of λfin are as follows:

T := 1 | 2 | T ×T | T → T

A typing judgement of λfin is of the form x1 : T1, . . . , xn : Tn ` s : T where Ti,T range

over terms, xi over variables and s over terms. The well-typed terms of λfin are defined

in Figure 5-1.

We can give call-by-name and call-by-value operational semantics to λfin in a stan-

dard manner.



Figure 5-1: Terms of λfin

x1 : T1, . . . , xn : Tn ` xi : Ti
Γ, x : S ` t : T
Γ`λx.t : S → T

Γ` f : S → T Γ` s : S
Γ` f s : T

Γ` s : S×T
Γ`π1(s) : S

Γ` s : S×T
Γ`π2(s) : T

Γ` s : S Γ` t : T
Γ` 〈s, t〉 : S×T

Γ` tt : 2 Γ` ff : 2
Γ` t : A Γ` f : A
Γ,b : 2` case(b, t, f ) : A

Γ` u : 1

5.1.2 Call-by-name Lambda Calculus

From CBN to LLP: Types

A map φ− embedding call-by-name λfin into LLP was given in [53]. We recall this embed-

ding here. Types are mapped to negative formulas of LLP, with:

• φ−(1)=?1

• φ−(2)=?1O?1

• φ−(A×B)=φ−(A)&φ−(B)

• φ−(A → B)=?φ−(A)⊥Oφ−(B).

Note that no linear lifts are used here, so the resulting LLP formulas are reusable.

From CBN to LLP: Terms

A term x1 : T1, . . . , xn : Tn ` s : T is translated to an LLP proof of

`?φ−(T1)⊥, . . . ,?φ−(Tn)⊥,φ−(T).

• Variables and abstraction:

`φ−(Ti),φ−(Ti)⊥

`φ−(Ti),?φ−(Ti)⊥

`φ−(Ti),?φ−(T1)⊥, . . . ,?φ−(Tn)⊥

`?φ−(Γ)⊥,?φ−(S)⊥,φ−(T)
`?φ−(Γ)⊥,?φ−(S)⊥Oφ−(T)

• Application:



`?φ−(Γ)⊥,?φ−(S)⊥Oφ−(T)

`?φ−(Γ)⊥,φ−(S)
`?φ−(Γ)⊥, !φ−(S) `φ−(T)⊥,φ−(T)

`!φ−(S)⊗φ−(T)⊥,?φ−(Γ)⊥,φ−(T)
`?φ−(Γ)⊥,?φ−(Γ)⊥,φ−(T)

`?φ−(Γ)⊥,φ−(T)

• Pairing and projection:

`?φ−(Γ)⊥,φ−(S) `?φ−(Γ)⊥,φ−(T)
`?φ−(Γ)⊥,φ−(S)&φ−(T)

`?φ−(Γ)⊥,φ−(S)&φ−(T)
`φ−(S)⊥,φ−(S)

`φ−(S)⊥⊕φ−(T)⊥,φ−(S)
`?φ−(Γ)⊥,φ−(S)

• Boolean true, false; unit:

`?φ−(Γ)⊥,1,?1
`?φ−(Γ)⊥,?1,?1
`?φ−(Γ)⊥,?1O?1

`?φ−(Γ)⊥,?1,1
`?φ−(Γ)⊥,?1,?1
`?φ−(Γ)⊥,?1O?1

`?φ−(Γ)⊥,1
`?φ−(Γ)⊥,?1

• Case:

`?φ−(Γ)⊥,φ−(A)
`?φ−(Γ)⊥,⊥,φ−(A)
`?φ−(Γ)⊥, !⊥,φ−(A)

`?φ−(Γ)⊥,φ−(A)
`?φ−(Γ)⊥,⊥,φ−(A)
`?φ−(Γ)⊥, !⊥,φ−(A)

`?φ−(Γ)⊥,?φ−(Γ)⊥, !⊥⊗!⊥,φ−(A),φ−(A)
`?φ−(Γ)⊥,?φ−(Γ)⊥,?(!⊥⊗!⊥),φ−(A),φ−(A)

`?φ−(Γ)⊥,?(!⊥⊗!⊥),φ−(A)

Using this translation, call-by-name reduction of lambda terms can be simulated using

cut elimination of LLP [53].

From CBN to WS

The composition of the above to translations give an interpretation i ◦φ− of CBN inside

WS1. Here we discuss the result of this translation.

First, we note that if a type is constructed without using ×, the resulting family in

WS1 is singleton (this can be shown by an easy induction on types).

The type of Booleans 2 is translated to the LLP formula ?1O?1. This is mapped to

the WS singleton family ?(>®1)O?(>®1), which is isomorphic to ?>O?>∼=>⊕>. A term



of type 2 is translated to an LLP proof of `?1O?1. This is translated to a WS proof of

`⊥,>⊕>, modulo the simplification above.

The type 2× 2 → 2 is translated to LLP as the formula ?(!⊥⊗!⊥)O?1O?1. This is

mapped to the WS singleton ?(>® (!⊥⊗!⊥))O?>O?>. A term of type 2×2 → 2 is trans-

lated to an LLP proof of `?(!⊥⊗!⊥)O?1O?1. This is translated to a WS proof of `⊥,?(>®
(!⊥⊗!⊥))O?>O?>. By applying isomorphisms, this is equivalent to a proof of `⊥,?(>®
(⊥&⊥)),>⊕> or `⊥� (>⊕>),?(>® (⊥&⊥)), which is !B(B and agrees with the Intu-

itionistic Linear Logic transformation.

5.1.3 Call-by-value Lambda Calculus

From CBV to LLP: Types

We describe a map φ+ embedding call-by-value λfin into LLP, following [53]. Types are

mapped to positive formulas of LLP, with

• φ+(1)= 1

• φ+(2)= 1⊕1

• φ+(A×B)=φ+(A)⊗φ+(B)

• φ+(A → B)=!(φ+(A)⊥O ↑φ+(B)).

In [53], the embedding is slightly different: ? is used rather than ↑ in the translation of

→. This allows continuation control operators to be modelled (the λµ-calculus). We chose

the simpler setting as it will allow us to express a different operator (encaps) which is

closely related to the anamorphism rule of our logic. To obtain the original presentation,

all uses of ↑ (resp. ↓) can be typographically replaced for ? (resp. !) in this embedding.

Note that for all T, φ+(T)⊥ is reusable.

From CBV to LLP: Terms

A term x1 : T1, . . . , xn : Tn ` s : T is translated to an LLP proof of

`↑φ+(T),φ+(T1)⊥, . . . ,φ+(Tn)⊥.

• Variables and abstraction:

`φ+(Ti),φ+(Ti)⊥

`↑φ+(Ti),φ+(Ti)⊥

`↑φ+(Ti),φ+(T1)⊥, . . . ,φ+(Tn)⊥

`↑φ+(T),φ+(S)⊥,φ+(Γ)⊥

`φ+(S)⊥,↑φ+(T),φ+(Γ)⊥

`φ+(S)⊥O ↑φ+(T),φ+(Γ)⊥

`!(φ+(S)⊥O ↑φ+(T)),φ+(Γ)⊥

`↑!(φ+(S)⊥O ↑φ+(T)),φ+(Γ)⊥



• Application:

`↑!(φ+(S)⊥O ↑φ+(T)),φ+(Γ)⊥

`↑φ+(S),φ+(Γ)⊥ q
`?(φ+(S)⊗ ↓φ+(T)⊥),↑φ+(T),φ+(Γ)⊥

`↓?(φ+(S)⊗ ↓φ+(T)),↑φ+(T),φ+(Γ)⊥

`↑φ+(T),φ+(Γ)⊥,φ+(Γ)⊥

`↑φ+(T),φ+(Γ)⊥

where q is:

`φ+(S),φ+(S)⊥ `↑φ+(T),↓φ+(T)⊥

`φ+(S)⊗ ↓φ+(T)⊥,↑φ+(T),φ+(S)⊥

`?(φ+(S)⊗ ↓φ+(T)⊥),↑φ+(T),φ+(S)⊥

`?(φ+(S)⊗ ↓φ+(T)⊥),↑φ+(T),↓φ+(S)⊥

• Pairing and projection:

`↑φ+(S),φ+(Γ)⊥

`↑φ+(T),φ+(Γ)⊥

`φ+(S),φ+(S)⊥ `φ+(T),φ+(T)⊥

`φ+(S)⊗φ+(T),φ+(S)⊥,φ+(T)⊥

`↑ (φ+(S)⊗φ+(T)),φ+(S)⊥,φ+(T)⊥

`↑ (φ+(S)⊗φ+(T)),φ+(S)⊥,↓φ+(T)⊥

`↑ (φ+(S)⊗φ+(T)),φ+(S)⊥,φ+(Γ)⊥

`↑ (φ+(S)⊗φ+(T)),↓φ+(S)⊥,φ+(Γ)⊥

`↑ (φ+(S)⊗φ+(T)),φ+(Γ)⊥,φ+(Γ)⊥

`↑ (φ+(S)⊗φ+(T)),φ+(Γ)⊥

`↑ (φ−(S)⊗φ−(T)),φ−(Γ)⊥

`φ−(S),φ−(S)
`↑φ−(S),φ−(S)

`↑φ−(S),φ−(S),φ−(T)
`↑φ−(S),φ−(S)Oφ−(T)

`↑φ−(S),↓ (φ−(S)Oφ−(T))
`↑φ−(S),φ−(Γ)⊥

• Boolean true, false; unit:

` 1,φ−(Γ)⊥⊕1 ` 1⊕1,φ−(Γ)⊥

`↑ (1⊕1),φ−(Γ)⊥

` 1,φ−(Γ)⊥⊕2 ` 1⊕1,φ−(Γ)⊥

`↑ (1⊕1),φ−(Γ)⊥

` 1,φ+(Γ)⊥

`↑ 1,φ+(Γ)⊥

• Case:



`↑φ+(A),φ+(Γ)⊥

`↑φ+(A),⊥,φ+(Γ)⊥
`↑φ+(A),φ+(Γ)⊥

`↑φ+(A),⊥,φ+(Γ)⊥

`↑φ+(A),⊥&⊥,φ+(Γ)⊥

Using this translation, call-by-value reduction of lambda terms can be simulated using

cut elimination of LLP [53].

From CBV to WS

The composition of the above to translations give an interpretation i ◦φ+ of CBV inside

WS1. Here we discuss the result of this translation.

First, we note that i(φ+(2))= i(1⊕1)= {1,1} which is a pair of formulas, unlike in CBN

which used a singleton formulation. This is because Booleans are ground types, and in

call-by-value a term of ground type is an element of a set rather than a computation.

Nonetheless, a term of type 2 is interpreted as a LLP proof of `↑ (1⊕1) which corresponds

to a WS1 proof of `⊥, ((>®1)⊕ (>®1) i.e. `⊥,>⊕>.

The type 2→ 2 is translated to the LLP formula !((⊥&⊥)O ↑ (1⊕1). Since i(↑ (1⊕1))=
{((>®1)⊕ (>®1))}∼= {>⊕>}, we have i((⊥&⊥)O ↑ (1⊕1))= {↑ (0O(>⊕>)),↑ (0O(>⊕>))}∼=
{>⊕>,>⊕>}. Finally, i(!((⊥&⊥)O ↑ (1⊕1)))= {!((⊥� (>⊕>))&(⊥� (>⊕>)))}.

Thus a term of type 2 → 2 is translated to a LLP proof of `↑!((⊥&⊥)O?(1⊕1), which

is mapped to a WS1 proof of `⊥,>®!((⊥� (>⊕>))&(⊥� (>⊕>))). It is worth comparing

a dialogue in this game with a dialogue in the CBN equivalent !B(B.

• In the CBN version, Opponent asks for the output Boolean (output move in B).

Player then may ask for the input Boolean multiple times and Opponent is under

no obligation to give the same one each time (moves in input !B). Finally, Player

can produce the output Boolean (in B).

• In the CBV version, Opponent indicates that he wishes to call the function (opening

⊥ move). Player may then interact with the environment, perhaps as he evaluates

earlier arguments. Once completed, Player plays >.

Opponent can then (repeatedly) use the resulting function. He does this by giving

the input Boolean (which is just a single move — any term of type 2 must already

have been evaluated previously). Player can then (after further interaction with

the environment) give the output Boolean.

If a, b and c are terms of type 2 (which may nonetheless interact with the environment),

the application rule ensures that in the term (λxy.c)ab these interactions occur in the

following order: a, then b, then c. This is reflected in the translation of the application

rule to a WS proof, which we demonstrate here in the case that the argument (and



everything in the environment) is a singleton family. For brevity we write T for i(φ+(T))

and S for i(φ+(S)).

`⊥,>®!(⊥� (S⊥O(>®T))) q
Pcut `⊥,>®T, i(φ+(Γ)⊥), i(φ+(Γ)⊥)

`⊥,>®T, i(φ+(Γ)⊥)

where q is:

`⊥,>®S, i(φ+(Γ)⊥)

` S,S⊥ `⊥�T⊥,>®T
Pmul⊗ ` S⊗ (⊥�T⊥),S⊥,>®T

`>, (S⊗ (⊥�T⊥)),S⊥,>®T
`>® (S⊗ (⊥�T⊥)),S⊥,>®T
`?(>® (S⊗ (⊥�T⊥))),S⊥,>®T

`⊥,S⊥O?(>® (S⊗ (⊥�T⊥)))O>®T
`⊥,S⊥,?(>® (S⊗ (⊥�T⊥))),>®T
`⊥�S⊥,?(>® (S⊗ (⊥�T⊥))),>®T

Pcut `⊥,?(>® (S⊗ (⊥�T⊥))),>®T, i(φ+(Γ)⊥)
`⊥�?(>® (S⊗ (⊥�T⊥))),>®T, i(φ+(Γ)⊥)

5.2 Call-by-value Finitary Imperative Language

In the previous section, we gave an embedding of finitary call-by-name and call-by-value

lambda calculi inside WS1. In the next sections we describe how this embedding can be

extended to more expressive languages.

We will first show how the call-by-value embedding via LLP can be extended with

imperative features. In particular, we consider ground state, coroutining, and an encap-

sulation operator reflecting the Pana rule.

5.2.1 A Call-by-value Finitary Imperative Language

We extend CBV λfin with some imperative features. Firstly we note that in a call-by-

value setting, imperative sequencing a;b can be simulated by (λx.b)a where x is a fresh

variable. Similarly, let(x, e, M) (let x be e in M) can be defined as (λx.M)e, and e will be

evaluated before M.

• Storage Cell — A Boolean storage cell can be represented by the product of its

“read” and “write” methods, of type (1 → 2)× (2 → 1). We introduce a new constant

cell : 2 → (1 → 2)× (2 → 1) which generates a new storage cell with a given starting

value.



• Coroutines — We can introduce a deterministic form of multithreading by defin-

ing a coroutining constant co : ((1 → 1) → 1) → ((1 → 1) → 1) → 1. A term of type

(1 → 1) → 1 can be seen as a command which may call its argument (a command,

of type 1 → 1) multiple times. The idea is that in co a b we run a and b in an

interleaved manner, where control starts in a and is passed to b when (and if) a

calls its argument. When b calls its argument, control is passed back to a, and so

on. Whenever either a or b terminates, then co a b terminates.

• Encaps — We can represent a mild form of higher-order state using a constant

encaps : (s → (o× s))→ s → 1→ o. The idea is that t = encaps f s0 : 1→ o represents

a stream of output values, computed from an internal state. The internal state

starts as s0 and each time t() is invoked f is applied to the internal state, which

determines the result of the current t() call and the new internal state. Note that

s and o can be arbitrary types. An ML implementation can be given using general

reference cells:

(* val encaps : ('s -> 'o * 's) -> 's -> unit -> 'o *)

let encaps f i =

let s = ref i in

fun (_ : unit) ->

let (o,ns) = f !s in

s := ns; o;;

The encaps operation is the program interpretation of the Pana rule.

For simplicity of our WS1 translation, we will assume that any occurrence of 2 in s

or o occurs under an arrow: we require that they are not “value types” and so s and

o are translated to singleton families in WS1.

We will call the CBV λfin with these constants TotLangV.

Remark The encaps operator appears in [58]. It also corresponds to the thread operator

in [75], which is used for interpreting the internal state of imperative objects in a Curien-

Lamarche games model. The type of thread corresponds to (p× s → o× s) → s → (p → o)

where p is a ground type. In our setting p is forced to be 1, but the more general form

can be be emulated using a reference cell written by the environment before each call.

Dually, ground reference cells can be defined using this more general form of encaps.

We can make a similar remark for coroutines. In [48], the two coroutines can pass

ground values to each other when they also pass control. This message-passing can be

simulated in our setting using shared ground variables; and ground variables can be

simulated using message-passing coroutines.



We can use encaps and cell to define a stack of Booleans, with push and pop opera-

tions, following Figure 3-4. In using encaps, the state type is 1 → 2 and the output type

is (2→ 1)× (1→ 2). We use ML concrete syntax (ref corresponds to cell; assignment and

dereferencing to projections; and if-then-else to case).

(* val newstack : unit -> (bool -> unit) * (unit -> bool) *)

let newstack = fun (_:unit) ->

let f = fun (pop : unit -> bool) ->

let pushed = ref false in

let valu = ref false in

let push b = pushed := true; valu := b in

let newpop() = if !pushed then (pushed := false; !valu) else pop() in

((push,pop),newpop) in

let i = fun (_:unit) -> false in

let stack = encaps f i in

let push b = fst (stack()) b in

let pop () = snd (stack()) () in

(push,pop);;

Testing this in an ML interpreter gives the expected result.

Operational Semantics

We next give operational semantics of TotLangV, which we intend our WS1 embedding

to respect. We use a small-step style, adding two state components to the terms. First,

a ground store G, which is a partial mapping from locations to Booleans. Second, a

stream store ST, which is a partial mapping from locations to pairs of terms (v, t) where

v : s → o×s and t : s. The operation fr picks a fresh location. We introduce some auxiliary

constants:

• If l is a G-location, we add δl : 1→ 2 for dereferencing and and αl : 2→ 1 for assign-

ment

• If r is a ST-location with types s and o, we add νr : 1→ o requesting a new element

of the stream r, and ρr : o× s → o representing a term which acts like π1 but also

updates the second component of r.

We next define the class of values. Here M ranges over terms, V over values and pk over

partially applied constants — terms kM1 . . . Mn where k is a constant and n < ar(k). The

arity of encaps is 2.

V := x | pk | () | tt | ff | 〈V ,V 〉 | λx.M



Figure 5-2: Operational Semantics of TotLangV

E[(λx.M) V ] → E[M{V /x}]
E[case(tt, M, N)] → E[M]
E[case(ff, M, N)] → E[N]

E[π1(〈V1,V2〉)] → E[V1]
E[π2(〈V1,V2〉)] → E[V2]

E[cell Vb],G → E[〈λ_.δl (),λx.αl x〉],G[l 7→Vb]
where l = fr(G)

E[δl ()],G[l 7→ b] → E[b],G[l 7→ b]
E[αl Vb],G[l 7→ _] → E[()],σ[l 7→Vb]

E[co (λx.Fx[x()]) M] → E[co M (λx.Fx[()])]
E[co (λx.()) M] → E[()]

E[encaps Vf Vs],ST → E[νr],ST[r 7→ (Vf ,Vs)]
where r = fr(ST)

E[νr ()],ST[r 7→ ( f , s)] → E[ρr ( f s)],ST[r 7→ ( f , s)]
E[ρr 〈Vo,Vs〉],ST[r 7→ ( f ,_)] → E[Vo],ST[r 7→ ( f ,Vs)]

Evaluation contexts are given by

E[_] := _ | E[_]M | V E[_] | 〈E[_], M〉 | 〈V ,E[_]〉 | case(E[_], M, M) | co(λx.E[_], M)

Every term M can be written in the form E[N] for some evaluation context E and term

N. The idea is that the first step of evaluating M consists of evaluating N inside the

context E.

We give the small-step operational semantics for TotLangV in Figure 5-2. The reduc-

tion relation is between tuples (G,ST, t) where G is a ground store, ST is a stream store

and t is a term. The metavariable Fx ranges over evaluation contexts that do not bind

x. If either of the state components is preserved, we omit it.

5.2.2 Embedding into WS1

We next embed TotLangV into WS1. For the CBV λfin fragment, we use the embedding

via LLP defined above, and so we only need to embed the three imperative constants. The

embedding of cell follows the game semantics given in [8]; the embedding of co follows

the game semantics given in [51]; the embedding of encaps uses the anamorphism rule

of WS1. Recall the notation ↑ P =⊥�P and ↓ N =>®N on WS1 formulas.

Boolean Cell

φ+(2→ (1→ 2)× (2→ 1)) is the LLP formula

C =!((⊥&⊥)O ↑ (!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1))



and to be compatible with our λfin embedding we must give a LLP proof of `↑ C or a WS1

proof of `⊥,>® i(C). We will in fact use a combination of these approaches, translating

a fragment of LLP proof that massages the types, together with a WS1 representing the

history-sensitive behaviour. The former is as follows:

q1 `!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)
`⊥, !(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)

q2 `!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)
`⊥, !(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)

`⊥&⊥, !(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)
`⊥&⊥,↑ (!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)

` (⊥&⊥)O ↑ (!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)
`!((⊥&⊥)O ↑ (!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1))

Using the WS1 translation of the above as the start (bottom) of our proof, we require

proofs q1, q2 ` ⊥,>® i(!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)) representing the history-sensitive

behaviour of the Boolean cell, for each possible starting value. Using P+
⊥(P®(P−

>(−))) it is

sufficient to give proofs of ` i(!(⊥O ↑ (1⊕1))⊗!((⊥&⊥)O ↑ 1)), which is

`!(⊥� (0O(>®1⊕>®1)))⊗!((⊥� (0O(>®1)))&(⊥� (0O(>®1))))

which is isomorphic to !(⊥� (>⊕>))⊗!((⊥�>)&(⊥�>)) ∼= !(B&Bi) with isomorphisms

definable in WS1. We can obtain our required proof by composing this isomorphism with

the Boolean cell proof given in Section 3.4.3.

Coroutines

By using the translation of abstraction, it is sufficient to give a proof of `⊥,>®i◦φ+(1), i◦
φ+((1→ 1)→ 1)⊥, i◦φ+((1→ 1)→ 1)⊥ i.e. `⊥,>®1,? ↓ (! ↑ (0O ↓ 1)⊗! ↑ 0),? ↓ (! ↑ (0O ↓ 1)⊗! ↑
0) which is isomorphic to `⊥,>,?(>® (!(⊥�>)⊗⊥),?(>® (!(⊥�>)⊗⊥). This is in turn

isomorphic to ` Σ,?(Σ⊥®!Σ),?(Σ⊥®!Σ) where Σ =⊥�>, with isomorphisms definable in

WS1. Thus it suffices to give a proof cocomp of ` Σ,?(Σ⊥®!Σ),?(Σ⊥®!Σ). We first give a

proof o of (!Σ(⊥)(!Σ.



Pid `⊥�?(>®⊥),>®!(⊥�>)
`>,⊥�?(>®⊥),>®!(⊥�>)

`>® (⊥�?(>®⊥)),>®!(⊥�>)
`⊥,>®!(⊥�>),>® (⊥�?(>®⊥))
`⊥�>, !(⊥�>),>® (⊥�?(>®⊥))

`!(⊥�>),>® (⊥�?(>®⊥))
`>, !(⊥�>),>® (⊥�?(>®⊥))
`>®!(⊥�>),>® (⊥�?(>®⊥))

`⊥,>® (⊥�?(>®⊥)),>®!(⊥�>)
`⊥,>,⊥�?(>®⊥),>®!(⊥�>)
`⊥�>,⊥�?(>®⊥),>®!(⊥�>)

Pana `!(⊥�>),>®!(⊥�>)

Remark The above defines an isomorphism in G , but not in W as its inverse is not

winning.

We next define a proof o′ ` (!Σ( Σ) ( ⊥(!Σ, which connects the output move of the

first argument to the Player-move in the second argument.

o `!Σ,>®!Σ

`⊥,> `!Σ,?Σ⊥
Pmul⊗ `⊥⊗!Σ,?Σ⊥,>

`>,⊥, !Σ,?Σ⊥,>
` (>®⊥)®!Σ,?Σ⊥,>

`⊥,?Σ⊥,>, (>®⊥)®!Σ
`⊥�?Σ⊥,>, (>®⊥)®!Σ

Pcut `!Σ,>, (>®⊥)®!Σ
`!Σ�>,Σ⊥®!Σ

We can then define cocomp.

`>
`⊥,>

`>
`⊥,>

`⊥⊗⊥,>
`>,⊥,⊥,>

` (>®⊥)®⊥,>
`⊥,>, (>®⊥)®⊥

`Σ,Σ⊥®⊥

Pid `Σ,Σ⊥

Pid `!Σ,?Σ⊥ Pid `⊥,>
P( `!Σ,?Σ⊥®⊥,>

P+
sym `!Σ,>,?Σ⊥®⊥

P( `Σ,Σ⊥®!Σ,>,?Σ⊥®⊥
P+

sym `Σ,>,Σ⊥®!Σ,?Σ⊥®⊥
`Σ�>,Σ⊥®!Σ,?Σ⊥®⊥

Pcut `Σ,Σ⊥®!Σ,?Σ⊥®⊥ o′
Pcut `Σ,Σ⊥®!Σ,Σ⊥®!Σ

The semantics of cocomp agrees with the treatment given in [48,51].



Encaps

Let {S} = i ◦φ+(s) and {O} = i ◦φ+(o). By using the translation of abstraction, it is suf-

ficient to give a proof of ` ⊥,>® i ◦φ+(1 → o),S⊥, i ◦φ+(s → (o× s))⊥ i.e. ` ⊥,>®!(0O ↑
O),S⊥,? ↓ (S⊥⊗ ↑ (O⊥OS⊥)). We do so:

a

Pid `! ↑ (S⊥O ↓ (O⊗S)),? ↓ (S⊗ ↑ (O⊥OS⊥)) b
Pmul `↑ (↓O), ! ↑ (S⊥O ↓ (O⊗S)),S,? ↓ (S⊗ ↑ (O⊥OS⊥)),? ↓ (S⊗ ↑ (O⊥OS⊥)),S⊥
P?

con `↑ (↓O), ! ↑ (S⊥O ↓ (O⊗S)),S,? ↓ (S⊗ ↑ (O⊥OS⊥)),S⊥

`↑ (↓O), ! ↑ (S⊥O ↓ (O⊗S))⊗S,? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥
Pana `! ↑ (↓O),? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥

Pcut `! ↑ (0O ↓O),? ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥
PT
O `! ↑ (0O ↓O)),? ↓ (S⊗ ↑ (O⊥OS⊥)),S⊥

P+
sym `! ↑ (0O ↓O)),S⊥,? ↓ (S⊗ ↑ (O⊥OS⊥))

`>, ! ↑ (0O ↓O)),S⊥,? ↓ (S⊗ ↑ (O⊥OS⊥))
`⊥,>®! ↑ (0O ↓O)),S⊥,? ↓ (S⊗ ↑ (O⊥OS⊥))

where a is the evident isomorphism `! ↑ (0O ↓O),? ↓↑O⊥ and b is:

Pid ` S,S⊥

Pid `O,O⊥ Pid ` S,S⊥
Pmul `O,S,O⊥,S⊥

`O®S,O⊥,S⊥
PT
O `O®S,O⊥OS⊥

`>,O®S,O⊥OS⊥

`O⊥OS⊥O(↓O®S)
`⊥,O⊥OS⊥,↓O®S

Pmul⊗ ` S⊗ ↑ (O⊥OS⊥),↓O®S,S⊥
P+

sym ` S⊗ ↑ (O⊥OS⊥),S⊥,↓O®S
`>,S⊗ ↑ (O⊥OS⊥),↓O®S,S⊥

`↓ (S⊗ ↑ (O⊥OS⊥)),↓O®S,S⊥

`⊥, (↓O®S)O ↓ (S⊗ ↑ (O⊥OS⊥))OS⊥

`↑ (↓O),S,↓ (S⊗ ↑ (O⊥OS⊥)),S⊥
P?

der `↑ (↓O),S,? ↓ (S⊗ ↑ (O⊥OS⊥)),S⊥

5.3 The Logic WSN

In the next section, we will embed a (call-by-name) language with a base type of natural

numbers into our logic. In order to do this, we must be able to represent the infinitely

wide game (with a possible move for each natural number) as a formula. This is not



possible in WS1. However, we can add it without breaking any of the results achieved in

previous chapters.

5.3.1 The Logic WSN

Formulas

We extend the formulas of WS1 as follows:

M, N := . . . | ω
P, Q := . . . | ω

• The formula ω denotes the game where Opponent has a move for each natural

number, with no responses (so ω represents the countable product of ⊥ — we have

ω∼=⊥&ω).

• The formula ω denotes the game where Player has a move for each natural number,

with no Opponent-responses (so ω represents the countable sum of > — ω∼=>⊕ω).

We can encode the game of natural numbers (see Section 2.1.1) as ⊥�ω.

Proof Rules

The proof rules of WSN are given in Figure 5-3. Note that there is a rule Pn
ω

for each

n ∈N. We informally describe each rule:

• Given strategies σ and τ, Pω(σ,τ) plays as σ if Opponents first move is 0, or as τ(n)

if Opponents first move is n+1.

• Pn
ω

plays the natural number n as its first move, and then plays as its premise.

• The proof P0 denotes the strategy where Player plays 0, and play ends.

• The proof Psuc denotes the strategy where Opponent plays natural n and Player

responds by playing n+1.

• Pind is an inductive rule. The first premise gives Player’s response in the case that

Opponent plays 0, and the second premise gives the ‘inductive step’.

• Plfe
ω is interpreted by a game isomorphism.

5.3.2 Semantics of WSN

To model the new formulas and proof rules, we simply require that the object ⊥ has a

countable product ⊥ω. We then set JωK= JωK=⊥ω (the constant functor).



Figure 5-3: Proof rules for WSN — extends Figure 4-1

Core rules:

X ;Θ`⊥,Γ X ;Θ`ω,Γ
Pω X ;Θ`ω,Γ

X ;Θ`>,Γ
Pn
ω X ;Θ`ω,Γ

Other rules:

P0 X ;Θ`ω Psuc X ;Θ`ω,ω

X ;Θ` P X ;Θ` P⊥,P
Pind X ;Θ`ω,P

X ;Θ`ω,P ®N,Γ
Plfe
ω X ;Θ`ω,P, N,Γ

Proposition 5.3.1 Let C be a Cartesian category, and Aω a countable product of A.

Then X 7→ A× X has a final coalgebra, whose carrier is Aω.

Proof We write πn with n ∈N for the projections Aω→ A and 〈 f (i)〉i∈N for tupling (with

usual π1 and π2 for binary projections). The morphism α : Aω → A × Aω is given by

〈π0,〈πn+1〉n∈N〉. Note that α is an isomorphism, with α−1 = 〈gn〉n∈N with g0 = π1 and

gn+1 =πn ◦π2.

Given f : B → A×B we define $ f% : B → Aω as 〈 fn〉n∈N where f0 = π1 ◦ f and fn+1 =
fn◦π2◦ f . We need to show that$ f% is the unique map such that α◦$ f%= (id×$α%)◦ f .

To show that the equation holds, note that α ◦$ f% = 〈π0,〈πn+1〉n∈N〉 ◦ 〈 fn〉 = 〈π0 ◦
〈 fn〉,〈πn+1〉n∈N〈 fn〉〉 = 〈 f0,〈 fn+1〉n∈N〉. Similarly, (id×$α%) ◦ f = (id×〈 fn〉n∈N) ◦ f = (id×
〈 fn〉n∈N)◦〈π1,π2〉◦ f = (id×〈 fn〉n∈N)◦〈π1 ◦ f ,π2 ◦ f 〉 = 〈π1 ◦ f ,〈 fn〉n∈N ◦π2 ◦ f 〉 = 〈 f0,〈 fn ◦π2 ◦
f 〉n∈N〉 = 〈 f0,〈 fn+1〉n∈N〉.

For uniqueness, suppose α ◦ g = (id× g) ◦ f . We show that for each i, πi ◦ g = f i, by

induction on i. For i = 0 we have π0 ◦ g =π0 ◦α−1 ◦ (id× g)◦ f =π1 ◦ (id× g)◦ f = id◦π1 ◦ f =
π1◦ f = f0. For i = j+1 we have πi◦g =πi◦α−1◦(id×g)◦ f =π j◦π2◦(id×g)◦ f =π j◦g◦π2◦ f =
f j ◦π2 ◦ f = f j+1 as required.

Proposition 5.3.2 In any WS-category with countable products, There is an isomor-

phism lfe : (B (⊥ω)® A ⇒ (A (B)(⊥ω.

Proof Using countable distributivity and linear functional extensionality of ⊥, we note

that (B (⊥ω)® A ∼= ((B (⊥)® A)ω ∼= ((A (B)(⊥)ω ∼= (A (B)(⊥ω.

We can use the above to interpret the proof rules of WSN. Note that the new rules do not

vary the X ;Θ context, and both W MΘ
X and GMΘ

X have countable products (lifted point-

wise). We give semantics to WSN in Figure 5-4.



Figure 5-4: Semantics of WSN — extends Figure 4-3

σ : JX ;Θ`⊥,ΓK τ : JX ;Θ`ω,ΓK
Pω

JΓK−(α−1)◦dist−1
Γ,− ◦〈σ,τ〉 : JX ;Θ`ω,ΓK

σ : JX ;Θ`>,ΓK
Pn
ω σ◦ JΓK+(πn) : JX ;Θ`ω,ΓK

P0
π1 ◦α : JX ;Θ`ωK Psuc

ΛI (π2 ◦α) : JX ;Θ`ω,ωK

σ : JX ;Θ` PK τ : JX ;Θ` P⊥,PK
Pind

ΛI ($〈σ,Λ−1
I (τ)〉%) : JX ;Θ`ω,PK

σ : JX ;Θ`ω,P ®N,ΓK
Plfe
ω JΓK−(lfe−1)◦σ : JX ;Θ`ω,P, N,ΓK

5.3.3 Full Completeness

An analytic proof in WSN is a proof using only the core rules, satisfying the leanness

restrictions in Section 4.3. If σ is a uniform winning strategy on JX ;Θ` ΓK, we say σ is

finitary if σ(L,v) is finite whenever |L| is. By using a countable version of π-atomicity, we

can show that:

Proposition 5.3.3 In WSN, each finitary uniform winning strategy on JX ;Θ` ΓK is the

denotation of a unique analytic proof.

Proof We extend the results of previous chapters. In particular, any uniform winning

strategy on Jω,ΓK corresponds to a particular projection πn and a uniform winning strat-

egy on J>,ΓK. For the Pω rule, we note that if σ : Jω,ΓK is finitary then it can respond to

only finitely many inputs, and so isn’t total, and so this case never arises.

The procedure terminates using the same inductive measure: any finitary strategy

on a WS1-type must be bounded. To see this, note that the maximum play size over all

σ(L,v) is the same as the maximum play size in σ(L,v) for any particular (L,v) satisfying

all positive atoms. By picking such an |L| that is finite, we see that σ(L,v) is finite, hence

bounded. And so σ is bounded.

The comment above regarding Pω indicates that the above proposition is of limited use,

as formulas involving ω will not typically be inhabited by any finitary uniform winning

strategy. However, as before we can reify infinite uniform total strategies to infinitary

analytic proofs:

Proposition 5.3.4 In WSN, each uniform total strategy on JX ;Θ ` ΓK is the denotation

of a unique infinitary analytic proof.



The details follow those given in Sections 3.7 and 4.4: for proving some propositions it

is convenient to view the Pω core rule as an infinitely wide rule with countably many

premises of X ;Θ ` ⊥,Γ. Again, while analytic proofs are infinite they are ‘productive’:

each finite portion of the (total) strategy can be found by examining a finite part of the

proof tree.

We can thus normalise proofs in WSN to infinitary analytic proofs; and two proofs

are denotationally equivalent if and only if they have the same normal form.

5.4 A Total Call-by-name Language

Next, we will show how we can embed a total call-by-name imperative language with an

infinite ground type in WSN. This language might be compared to Gödel’s System T with

some imperative features and call-by-name semantics. The embedding will be based on

negative formulas and the Intuitionistic Linear Logic translation.

5.4.1 Programming Language

Types and Terms

The language TotLang will be an applied simply-typed lambda calculus with base types

nat (natural numbers), com (commands) and var (natural number reference cells).

Remark This language does not have products. Instead, we can represent a stateful

object with methods of type A and B as a term newobj : ((A -> B -> com) -> com

the idea is that newobj (λ x y . c) provides c with access to an instance of this

object and its methods x : A and y : B following Idealized Algol [71]. We write A *

. . . * AN for the stateful object type ((A1 -> . . . -> AN) -> com) -> com.

The terms of TotLang are those of the simply typed lambda calculus over the given

base types, together with the following constants (where G ∈ { nat , com }):

• Imperative Flow: _ ; _ : com -> G -> G , skip : com

• Naturals: 0 : nat , suc : nat -> nat

• Conditional and Looping: ifzero : nat -> G -> G -> G , repeat : nat

-> com -> com

• Ground Reference Cells: _:=_ : var -> nat -> com , !_ : var -> nat ,

newvar : nat -> (var -> G) -> G , mkvar : nat -> (nat -> com) -> var

• Coroutines: _ || _ : (com -> com) -> (com -> com) -> com

• Encapsulation: encaps : (s -> s) * (s -> o) -> s -> (o -> com) -> com



We will write newvar x := n in M as shorthand for newvar n (λ x . M). The mkvar

constructor allows the programmer to create custom variables that do not behave as

a standard variable cell, they are required for the games model of TotLang to be fully

abstract. The encaps operator acts as in the CBV setting, but as there are no products

in TotLang we have needed to massage the types into a CPS form.

Example Programs

We briefly demonstrate the expressivity of TotLang.

• Primitive Recursive Functions: We can define addition as

λ m n . newvar x := n in repeat m (x := succ !x) ; !x

Similarly, we can define all of the primitive recursive functions.

• Stack of Ground Values: Using encaps we can define stacks of ground variables

newstack : (var -> com) -> com using a similar approach to that in Section

5.2.1. Then ! acts as pop; and := as push.

λ f . encaps (λ h . newvar x := 0 in h a b) 0 f

where a = λ n . ifzero !x then n else

(newvar z := !x - 1 in x := 0 ; !z)

b = λ n . mkvar n (λ m . x := suc m)

• Postfix Calculator: We can use a stack to define a postfix calculator newpfc :

(nat -> (nat -> com) -> com -> com -> com) -> com with answer, literal, ad-

dition and multiplication methods.

newpfc = λ f . newstack (λ x . f ans lit add mult)

where ans = !x

lit = λ n . x := n

add = x := !x + !x

mult = x := !x × !x

• Set of Naturals: Similarly, we can define a newset : ((nat -> com) -> (nat

-> com) -> (nat -> nat) -> nat -> com) -> com operator that constructs a

set of naturals, where newset (λ s.add s.rem s.elem s.count . H) gives H

access to the add, remove, test and count methods.



Figure 5-5: TotLang types as WSN Formulas

tlws(com) = ⊥�>
tlws(nat) = ⊥�ω
tlws(var) = (⊥�ω)&(ω�>)

tlws(A → B) = tlws(B)�?tlws(A)⊥

newset = λ f . newstack (λ s . newvar n := 0 in f add rem elem count)

where add = λ x . if (elem x) then () else (s := x ; n := n + 1)

rem = λ x . newvar y := 0 in newstack t in

repeat !n (let z = !s in

if (z != x) then t := z else y := !y + 1) ;

repeat (!n - !y) (s := !t) ; n := !n - !y

elem = λ x . newvar y := 1 in newstack t in

repeat !n (let z = !s in t := z; if (z == x) then y := 0) ;

repeat !n (s := !t) ; !y

count = !n

• Growing Function: We can use encaps for limited forms of higher-order state.

For example, we can define newgrow : (a -> a) -> ((a -> a) -> com) -> com

such that newgrow f creates a function that acts as f the first time it is called, f◦f
the second time, and in general fn on its nth interrogation.

λ f g . encaps (λ h . h af bf) f g

where af = λ j a . j (f a)

bf = λ j . j

Thus we see that, while TotLang is a total programming language, it is nonetheless quite

expressive.

We can give operational semantics to TotLang in a standard manner. The rules for

encaps are: E[encaps g a (λ x . V)] → E[V] and E[encaps g a (λ x . F(x)[x])]

→ E[g (λ j k . encaps g (j a) (λ x . F(x)[k a]))].

5.4.2 Embedding into WSN

Types

We translate types of TotLang to negative formulas of WSN using the function tlws

given in Figure 5-5. A term x1 : A1, . . . , xn : An ` s : B will be interpreted as a proof of

` tlws(B),?tlws(A1)⊥, . . . ,?(An)⊥.



Terms : Lambda Calculus

For the λ-calculus fragment, we use our interpretation of Intuitionistic Linear Logic to-

gether with a Kleisli translation. Variables and abstraction are translated as follows:

Pid ` A i, A⊥
iP?

der ` A i,?A⊥
iP+

wk ` A i,?A⊥
1 , . . . ,?A⊥

n

` C,?B⊥,?A⊥
1 , . . . ,?A⊥

n

` C�?B⊥,?A⊥
1 , . . . ,?A⊥

n

The application rule is translated using cut and promotion as follows:

` C�?B⊥,?A⊥
1 , . . . ,?A⊥

n

Pid ` C,C⊥ Pid `!B,?B⊥
P( ` C,C⊥®!B,?B⊥

P+
sym ` C,?B⊥,C⊥®!B

Pcut ` C,?B,?A⊥
1 , . . . ,?A⊥

nPsym ` C,?A⊥
1 , . . . ,?A⊥

n ,?B

` B,?A⊥
1 , . . . ,?A⊥

nPprom `!B,?A⊥
1 , . . . ,?A⊥

n
Pcut ` C,?A⊥

1 , . . . ,?A⊥
n ,?A⊥

1 , . . . ,?A⊥
n

P?
con ` C,?A⊥

1 , . . . ,?A⊥
n

Terms : Constants

We next give an interpretation of each of the constants. We write P+
wk i for the P+

wk rule

that concludes ` A1, . . . , An from ` A1, . . . , A i−1, A i+1, . . . , An for 1 6 i 6 n where A i is

positive.

• skip : com, zero : nat and suc : nat -> nat are given by

`>
`⊥,>
`⊥�>

P0 `ω
`⊥,ω
`⊥�ω

Pid `⊥,> Psuc `ω,ω
P( `⊥,>®ω,ω

`⊥,ω,>®ω
`⊥�ω,>®ω

• _ ; _ : com -> G -> G is given as follows, where G ranges over ⊥, ω.



Pid `G,G⊥

`>,G,G⊥

`>�G,G⊥

`⊥,G⊥, (>�G)
`>,⊥,G⊥, (>�G)
`>�⊥,G⊥,>�G

`⊥,G⊥,>�⊥,>�G
`⊥�G⊥,>�⊥,>�G

P?
der `⊥�G⊥,?(>�⊥),?(>�G)

• repeat : nat -> com -> com is given as follows:

`>
`>,?(>®⊥)
`>O?(>®⊥)

`>
`⊥,>

`>,⊥,>
`>®⊥,>

`⊥,>®⊥,>
`⊥,?(>®⊥),>

P+
sym `⊥,>,?(>®⊥)

Pid `!(⊥�>),?(>®⊥)
Pmul⊗ `⊥⊗!(⊥�>),>,?(>®⊥),?(>®⊥)

P?
con `⊥⊗!(⊥�>),>,?(>®⊥)

PT
O `⊥⊗!(⊥�>),>O?(>®⊥)

Pind `ω,>O?(>®⊥)
`>,ω,>,?(>®⊥)
`>�ω,>,?(>®⊥)

`⊥,>,>�ω,?(>®⊥)
`⊥®>,>�ω,?(>®⊥)

P?
der `⊥®>,?(>�ω),?(>®⊥)

• ifzero : nat -> G -> G -> G is defined as follows, where G ranges over ⊥, ω.

Pid `⊥,> Pid `G,G⊥
P( `⊥,>®G,G⊥

P+
sym `⊥,G⊥,>®G

P+
wk3 `⊥,G⊥,>®G,>®G

`>
`>

`⊥,>
Pind `ω,> Pid `G,G⊥

P( `ω,>®G,G⊥
P+

sym `ω,G⊥,>®G
P+

wk2 `ω,G⊥,>®G,>®G
`ω,G⊥,>®G,>®G

`>,ω,G⊥,>®G,>®G
`⊥,G⊥,>®ω,>®G,>®G
`⊥�G⊥,>®ω,>®G,>®G

P?
der `⊥�G⊥,?(>®ω),?(>®G),?(>®G)



• ! _ : var -> nat and _ := _ : var -> nat -> com are defined thus:

Pid `⊥�ω,>®ω
PT⊕1 `⊥�ω,>®ω⊕ω®⊥

P?
der `⊥�ω,?(>®ω⊕ω®⊥)

Pid `ω,ω Pid `⊥,>
P( `ω,ω®⊥,>

`>,ω,ω®⊥,>
`>®ω,ω®⊥,>

`⊥,>,ω®⊥,>®ω
`⊥�>,ω®⊥,>®ω

PT⊕2 `⊥�>,>®ω⊕ω®⊥,>®ω
P?

der `⊥�>,?(>®ω⊕ω®⊥),?(>®ω)
• newvar : nat -> (var -> G) -> G is translated as follows:

pr `⊥�ω,⊥�ω,>®ω pw `ω�>,⊥�ω,>®ω
`⊥�ω&ω�>,⊥�ω,>®ω

Pana `!var,>®ω
P( `G,G⊥®!var,>®ω

P?
der `G,?(G⊥®!var),?(>®ω)

where G ranges over the formula representation of ground types, pr is:

`>P0
ω `ω
`⊥�ω

`>,⊥�ω
P0
ω `ω,⊥�ω
`ω® (⊥�ω)

Psuc `ω,ω

Pid `⊥,> Psuc `ω,ω
P( `⊥,>®ω,ω

`⊥,ω,>®ω
`⊥�ω,>®ω

P( `ω,ω® (⊥�ω), (>®ω)
P+

sym `ω, (>®ω),ω® (⊥�ω)
`ω� (>®ω),ω® (⊥�ω)

Pind `ω,ω® (⊥�ω)
`>®ω,ω® (⊥�ω)
`⊥,ω,⊥�ω,>®ω
`⊥�ω,⊥�ω,>®ω

and pw is:



P0 `ω
`⊥�ω

`>,⊥�ω
`>® (⊥�ω)

Pid `⊥,>

Pid `⊥,> Psuc `ω,ω
P( `⊥,>®ω,ω

P+
sym `⊥,ω,>®ω

`⊥�ω,>®ω
P( `⊥,>® (⊥�ω),>®ω

P+
sym `⊥,>®ω,>® (⊥�ω)

`⊥� (>®ω),>® (⊥�ω)
Pind `ω,>® (⊥�ω)

Plfe
ω `ω,>,⊥�ω

`ω�>,⊥�ω
P+

wk `ω�>,⊥�ω,>®ω
• mkvar : (nat -> com) -> nat -> var

p′ p′′
Pind `ω,>O((>®⊥)®!(⊥�ω))
PT
O `ω,>, (>®⊥)®!(⊥�ω)

`ω�>, (>®⊥)®!(⊥�ω)
P+

wk `ω�>,>®ω, (>®⊥)�!(⊥®ω)

Pid `⊥�ω,>®ω
P+

wk `⊥�ω,>®ω, (>®⊥)®!(⊥�ω)
`⊥�ω&ω�>,>®ω, (>®⊥)®!(⊥�ω)

P?
der `⊥�ω&ω�>,?(>®ω),?((>®⊥)®!(⊥�ω))

where p′ is:

`>
`⊥,>

P0 `ω
`⊥�ωPprom `!(⊥�ω)

Pmul⊗ `⊥⊗!(⊥�ω),>
`>,⊥, !(⊥�ω),>

` (>®⊥)®!(⊥�ω),>
`>O((>®⊥)®!(⊥�ω))

and p′′ is:

Pid `⊥,>

Pid `⊥�>,>®⊥

Pid `⊥,> Psuc `ω,ω
P( `⊥,>®ω,ω

P+
sym `⊥,ω,>®ω

P?
der `⊥�ω,?(>®ω)

Pprom `!(⊥�ω),?(>®ω)
P( `⊥�>, (>®⊥)®!(⊥�ω),?(>®ω)

`⊥�>,?(>®ω), (>®⊥)®!(⊥�ω)
Pmul⊗ `⊥⊗ ((⊥�>)�?(>®ω)),>, ((>®⊥)®!(⊥�ω))

PT
O `⊥⊗ ((⊥�>)�?(>®ω)),>O((>®⊥)®!(⊥�ω))



• We translate _ || _ : (com -> com) -> (com -> com) -> com using cocomp

as defined in Section 5.2.2.

cocomp`Σ,Σ⊥®!Σ,Σ⊥®!Σ
P?

der `Σ,?(Σ⊥®!Σ),?(Σ⊥®!Σ)
` (Σ�?(Σ⊥®!Σ))�?(Σ⊥®!Σ)

• We next describe encaps : (((a -> a) -> (a -> b) -> com) -> com) -> a

-> (b -> com) -> com. We use the anamorphism rule to construct a function a →
!b and compose this with the other inputs. The CPS types here makes the embed-

ding somewhat cumbersome. We introduce the unary proof rule P(id =P((Pid,_).

Pid `!A,?A⊥
P(id `!B,?B⊥®!A,?A⊥

P(id `Σ,Σ⊥®!B,?B⊥®!A,?A⊥
P+

sym `Σ,?B⊥®!A,Σ⊥®!B,?A⊥

`Σ� (?B⊥®!A),?(Σ⊥®!B),?A⊥
Pprom `!(Σ� (?B⊥®!A)),?(Σ⊥®!B),?A⊥

P(id `Σ,Σ⊥®!(Σ� (?B⊥®!A)),?(Σ⊥®!B),?A⊥
P+

sym `Σ,?(Σ⊥®!B),?A⊥,Σ⊥®!(Σ� (?B⊥®!A)) p1
Pcut `Σ,?(Σ⊥®!B),?A⊥,Σ⊥®!(Σ�?(A⊥OB⊥®!A)) p2
Pcut `Σ,?(Σ⊥®!B),?A⊥,Σ⊥®!((Σ�?(A⊥®!A))�?(B⊥®!A))
P?

der `Σ,?(Σ⊥®!B),?A⊥,?(Σ⊥®!((Σ�?(A⊥®!A))�?(B⊥®!A)))

where p1 is:



p′

Pid ` A, A⊥
P+

wk ` A, A⊥,B⊥
PT
O ` A, A⊥OB⊥ Pid `!A,?A⊥

P( ` A, A⊥OB⊥®!A,?A⊥
P+

sym ` A,?A⊥, A⊥OB⊥®!A
P?

der ` A,?A⊥,?(A⊥OB⊥®!A)
Pprom `!A,?A⊥,?(A⊥OB⊥®!A)

Pid `!(A⊗B�?A⊥),?(A⊥OB⊥®!A)
Pmul⊗ `!A⊗!(A⊗B�?A⊥),?A⊥,?(A⊥OB⊥®!A),?(A⊥OB⊥®!A)

P?
con `!A⊗!(A⊗B�?A⊥),?A⊥,?(A⊥OB⊥®!A)

Pmul ` B, !A⊗!(A⊗B�?A⊥),?A⊥,?(A⊥OB⊥®!A),?A⊥,?(A⊥OB⊥®!A)
P+

sym ` B, !A⊗!(A⊗B�?A⊥),?A⊥,?A⊥,?(A⊥OB⊥®!A),?(A⊥OB⊥®!A)
P?

con ` B, !A⊗!(A⊗B�?A⊥),?A⊥,?(A⊥OB⊥®!A)
PT
O ` B, !A⊗!(A⊗B�?A⊥),?A⊥O?(A⊥OB⊥®!A)

Pana `!B,?A⊥O?(A⊥OB⊥®!A)
PT
O `!B�?A⊥,?(A⊥OB⊥®!A)

P(id `Σ,Σ⊥® (!B�?A⊥),?(A⊥OB⊥®!A)
P+

sym `Σ,?(A⊥OB⊥®!A),Σ⊥® (!B�?A⊥)
`Σ�?(A⊥OB⊥®!A),Σ⊥® (!B�?A⊥)

P?
der `Σ�?(A⊥OB⊥®!A),?(Σ⊥® (!B�?A⊥))

Pprom `!(Σ�?(A⊥OB⊥®!A)),?(Σ⊥® (!B�?A⊥))
P(id `Σ,Σ⊥®!(Σ�?(A⊥OB⊥®!A)),?(Σ⊥® (!B�?A⊥))
P+

sym `Σ,?(Σ⊥® (!B�?A⊥)),Σ⊥®!(Σ�?(A⊥OB⊥®!A))
`Σ�?(Σ⊥® (!B�?A⊥)),Σ⊥®!(Σ�?(A⊥OB⊥®!A))

where p′ is:

Pid ` B,B⊥
P+

wk ` B, A⊥,B⊥
PT
O ` B, A⊥OB⊥ Pid `!A,?A⊥

P( ` B, A⊥OB⊥®!A,?A⊥
P+

sym ` B,?A⊥, A⊥OB⊥®!A
P?

der ` B,?A⊥,?(A⊥OB⊥®!A)

and p2 is:



Pid `!A,?A⊥
P(id ` A, A⊥®!A,?A⊥
P+

sym ` A,?A⊥, A⊥®!A
P?

der ` A,?A⊥,?(A⊥®!A)

Pid `!A,?A⊥
P(id ` B,B⊥®!A,?A⊥
P+

sym ` B,?A⊥,B⊥®!A
P?

der ` B,?A⊥,?(B⊥®!A)
Pmul⊗ ` A⊗B,?A⊥,?(A⊥®!A),?A⊥,?(B⊥®!A)

P+
sym ` A⊗B,?A⊥,?A⊥,?(A⊥®!A),?(B⊥®!A)

P?
con ` A⊗B,?A⊥,?(A⊥®!A),?(B⊥®!A)

` A⊗B�?A⊥,?(A⊥®!A),?(B⊥®!A)
Pprom `!(A⊗B�?A⊥),?(A⊥®!A),?(B⊥®!A)

P(id `Σ,Σ⊥®!(A⊗B�?A⊥),?(A⊥®!A),?(B⊥®!A)
P+

sym `Σ,?(A⊥®!A),?(B⊥®!A),Σ⊥®!(A⊗B�?A⊥)
` (Σ�?(A⊥®!A))�?(B⊥®!A),Σ⊥®!(A⊗B�?A⊥)

P?
der ` (Σ�?(A⊥®!A))�?(B⊥®!A),?(Σ⊥®!(A⊗B�?A⊥))

Pprom `!((Σ�?(A⊥®!A))�?(B⊥®!A)),?(Σ⊥®!(A⊗B�?A⊥))
P(id `Σ,Σ⊥®!((Σ�?(A⊥®!A))�?(B⊥®!A)),?(Σ⊥®!(A⊗B�?A⊥))
P+

sym `Σ,?(Σ⊥®!(A⊗B�?A⊥)),Σ⊥®!((Σ�?(A⊥®!A))�?(B⊥®!A))
`Σ�?(Σ⊥®!(A⊗B�?A⊥)),Σ⊥®!((Σ�?(A⊥®!A))�?(B⊥®!A))

Literature Comparison

This model is based on the ILL + Kleisli embedding. Ground state works as in [9]: in

the interpretation of newvar, the application of the map var -> G to the Boolean cell

of type !var does not implicitly promote its argument: multiple occurrences of the same

variable share the underlying strategy via contraction. This pattern is also found in the

interpretation of encaps.

Full Abstraction

We conjecture that the model of TotLang inside W , via our WSN embedding, is fully

abstract — i.e. two terms are observationally equivalent if and only if they are mapped

to the same strategy, following [8] and [51]. From this it follows that M and N are

observationally equivalent if and only if Jtlws(M)K= Jtlws(N)K which holds if and only if

tlws(M) and tlws(N) have the same (infinitary) normal forms.

5.5 Properties of Programs

The formulas available in WS1 are more expressive than the types in the languages

described above. We can exploit this by giving types (formulas) to terms (proofs) that

specify more behavioural properties than their basic type. We gave a “good variable”



example in Section 4.1.4, here we take a more general approach. We focus on the call-

by-name embedding.

Note that the expressivity here is restricted to specifying properties. Satisfaction of

these properties can be determined by examining the semantics. We may also wish to

consider syntactic ways of showing that a program satisfies these properties, but this

lies outside the scope of this thesis.

5.5.1 Using the First-order Structure

We wish to use the first-order structure of WS1 to apply predicates to the ground values

that are provided as the inputs and outputs of programs. To do this, we can exploit

the specialisation of WS1 given in Section 4.6. In this setting the underlying model is

fixed (natural numbers), and we assume constants 0 and s denoting the zero value and

successor function. There is an additional induction rule given by:

X ;Θ` N[0/x] X ] {x};Θ` N[s(x)/x], N⊥
P′

ind X ;Θ`∀x.N

Further, we can add additional function symbols and predicates to the first-order lan-

guage as desired, such as 6 and a positive version of =.

In this setting, the translation of the nat data type ⊥�ω denotes the same game as

⊥�∃x.>. We can show that ∀x.⊥∼=ω:

Pid {x}`ω,ω
{x}`>,ω,ω

{x}`>®ω,ω
Px
∃ {x}`∃x.(>®ω),ω

{x}`⊥,ω,∃x.(>®ω)
`∀x.⊥,ω,∃x.(>®ω)

P0 `ω
`⊥,ω
`⊥�ω

Psuc {x}`ω,ω
{x}`>,ω,ω

{x}`>®ω,ω
{x}`⊥,ω,>®ω

{x}`⊥�ω,>®ω
P′

ind `∀x.(⊥�ω)
Pcut p∀ω `∀x.⊥,ω

`>P0
∃ `∃x.>

{x}`>
Ps(x)
∃ {x}`∃x.>

{x}`⊥,∃x.>
`∀x.⊥,∃x.>

Pind pω∃ `ω,∃x.>
The denotation of the above proofs are the identity maps. By utilising this isomorphism

we will be able to use the first-order structure to represent properties on TotLang pro-

grams.



5.5.2 Embeddings and Specifications

Given a formula M (which may be the translation of TotLang type) and a proof p of ` M

(which may be the translation of a TotLang program) we next describe what it means

for p to satisfy a specification S on M. A specification S will be a syntactic object which

represents a subgame of M: a proof p satisfies S if all of the plays in JpK lie within

JSK. We have already encountered the notion of subgame when considering uniformity

of strategies — a subgame of M consists of a game N and an embedding N *M: a pair

of strategies in : N ( M and out : M ( N such that out◦ in= id and in◦outv id.

Definition Let M be a negative formula of WS1. A specification on M is a negative

formula S together with an embedding JSK* JMK.

We say that p ` M satisfies the specification (S, in,out) if each play in JpK lies within S

— i.e. JpK= in◦τ for some τ : S, or that JpK factors through the embedding.

Note that an embedding may not be total: as we have seen, 1 is a subgame of ⊥, but

the map in : 1 (⊥ is not total. If it is total, we can ask if it is definable by some WS1

proof.

Definition A specification (in,out) : JSK* JMK is definable if there is a proof p ` M,S⊥

with JpK= in.

If a specification is definable, we can construct a proof of ` M for any proof of the corre-

sponding specification ` S using Pcut.

5.5.3 Program Specifications

In the next section we will give some concrete examples of specifications on program

types with respect to TotLang; we will first identify some general patterns. We first

consider some definable embeddings.

• M,P�Q,∆* M,P,Q,∆ — This corresponds to a specification regarding order of

arguments, requiring that the proof/program accesses P before it accesses Q. To

give the embedding, we use P( together with a proof of

` P⊥®Q⊥,POQ

using Pmul and Pid.

• M, (P�_)nP,∆*M,?P,∆— This corresponds to a specification regarding the num-

ber of times an argument can be interrogated. In particular, if a proof of M,?P,∆



factors through this specification it must access its argument in P at most n+1

times. To give the embedding, we use P( together with a proof of

` (P⊥®_)n(P⊥),?P

which makes n uses of contraction, dereliction, and Pmul.

• ⊥� ∃x.> * ⊥�ω — Following the isomorphism given in Section 5.5.1, we can

replace an instance of the natural number type by a formula that binds the value

played to a first-order variable.

• M,φ(−→s ),∆* M,>,∆ — when a move > is to be played, this specification ensures

that the atomic formula φ(−→s ) is true in the model. The embedding uses P( to-

gether with the unique analytic proof of `φ(−→s ),>.

• M,P(n),∆*M,∃x.P(x),∆ for each natural number n — this corresponds to a spec-

ification that requires the chosen value of x to be n. The embedding can be con-

structed using P( and a proof of

` P(n)⊥,∃x.P(x)

which uses PT
∃

n and Pid.

The following embedding is not definable by a proof (in is not total):

• α�>*⊥�> — where α is a (nullary) atom. This uses an underlying map α*⊥
whose in component is given by id⊥ or ε, depending on the truth value of α. We can

use this to control the order that moves are played, noting that moves in negative

occurrences of α must occur before moves in positive occurrences (α) following the

example in Section 4.1.4.

Examples

We next give some concrete examples of WS1 specifications on TotLang types. A specifi-

cation on a TotLang type T is just a specification on tlws(T). In this section, we wish our

quantifiers to range over the maximum scope, and so a formula ∀x.α�∃y.β®∀z.γ�∃w.δ

should be read as ∀x.(α�∃y.(β®∀z.(γ�∃w.δ))), where the only choice at each move is

the appropriate value in the model.

• Identity function: We can give a specification on nat -> nat that is only satisfied

by the identity function. This is given by S = ⊥�>®∀x.⊥� ∃y.y = x, read as

⊥� (>® (∀x.(⊥� (∃y.y = x)))) — these moves correspond to output-request, input-

request, input, output respectively. The embedding is given below:



pω∃ `ω,∃z.>

{y, z}; y= z `>
Py
∃ {y, z}; y= z `∃u.>

{y, z}; y= z `⊥,∃u.> p∀ω : {y, z}; y= z `∀u.>,ω
Pcut {y, z}; y= z `⊥,ω

{y, z}` y 6= z,ω
{z}`∀y.y 6= z,ω

{z}`>,∀y.y 6= z,ω
{z}`>®∀y.y 6= z,ω

Pz
∃ {z}`∃x.>®∀y.y 6= x,ω

{z}`⊥,ω,∃x.>®∀y.y 6= x
`∀z.⊥,ω,∃x.>®∀y.y 6= x

Pcut `ω,ω,∃x.>®∀y.y 6= x
`>,ω,ω,∃x.>®∀y.y 6= x
`>®ω,ω,∃x.>®∀y.y 6= x

`ωO(>®ω),∃x.>®∀y.y 6= x
`⊥,∃x.>®∀y.y 6= x,ωO(>®ω)

`⊥� (∃x.>®∀y.y 6= x),ωO(>®ω)
`>,⊥�∃x.>®∀y.y 6= x,ωO(>®ω)
`>®⊥�∃x.>®∀y.y 6= x,ωO(>®ω)
`⊥,ω,>®ω,>®⊥�∃x.>®∀y.y 6= x
`⊥�ω,>®ω,>®⊥�∃x.>®∀y.y 6= x

P?
der `⊥�ω,?(>®ω),>®⊥�∃x.>®∀y.y 6= x

` (⊥�ω)�?(>®ω),>®⊥�∃x.>®∀y.y 6= x

The only strategy on JSK corresponds to the copycat strategy on ⊥�∃x.>∼=⊥�ω,

thus the only program satisfying S are those that behave as the identity on nat

-> nat, such as λ x . x. Note that λ x . ifzero x then x else x does not

satisfy this specification, as it interrogates its argument twice. If we wish to de-

scribe an identity function that can interrogate its argument an arbitrary number

of times but must return the result of the first interrogation, we can use the formula

⊥�>®∀x.⊥�?(>®ω)�∃y.y= x and an appropriate embedding.

• Inflationary function: Assuming that our language contains the constant 6, we

can define a specification on nat -> nat satisfied by functions that interrogate

their argument once and output a value that is no smaller than the input value.

This is given by ⊥�>®∀x.⊥�∃y.y 6 x and the embedding is a simple modifica-

tion of the identity example above. Generalising this, we can represent arbitrary

relationships between ground values, providing those relationships appear in the

language L .

• Addition: We can similarly define a specification on nat -> nat -> nat satisfied

only by those functions that interrogate their arguments once (but in either order)



and return the sum of their arguments. Let S = ⊥�>®∀x.⊥�>®∀y.⊥�∃z.z =
x+ y. Then there are two embeddings of this formula into nat -> nat -> nat

corresponding to whether we insist that the first or second argument is interrogated

first. The formula

⊥� (>®∀x.⊥�>®∀y.⊥�∃z.z = x+ y)⊕ (>®∀y.⊥�>®∀x.⊥�∃z.z = x+ y)

can be used to allow either order of interrogation. We could also weaken the speci-

fication further to allow multiple interrogation of arguments, as above.

• Higher-order Functions: We can also give specifications on higher-order types.

For example, we can give a specification on (nat -> com) -> com which insists

that the argument is only called with input 42. This can be given using the formula

(⊥�>)�?((>®⊥)®!(⊥�∃x.x = 42)) with the embedding overleaf.

For another example, we can consider a property on programs of type (nat ->

nat) -> nat which holds if the program behaves like λ f . f(5) + f(6). This

can be given using the formula

⊥�>®!(⊥�∃x.x = 5)®∀y.⊥�>®!(⊥�∃x.x = 6)®∀z.⊥�∃w.w = y+ z.

{x}, x 6= 42`>
Px
∃ {x}, x 6= 42`∃y.>

{x}, x 6= 42`⊥,∃y.>
{x}` x 6= 42,∃y.>
`∀x.x 6= 42,∃y.> p∀ω `∀y.>,ω

Pcut `∀x.x 6= 42,ω
`>,∀x.x 6= 42,ω
`>®∀x.x 6= 42,ω

`⊥,ω,>®∀x.x 6= 42
`⊥�ω,>®∀x.x 6= 42

P?
der `⊥�ω,?(>®∀x.x 6= 42)

Pprom `!(⊥�ω),?(>®∀x.x 6= 42)
P(id `⊥�>, (>®⊥)®!(⊥�ω),?(>®∀x.x 6= 42)
P+

sym `⊥�>,?(>®∀x.x 6= 42), (>®⊥)®!(⊥�ω)
` (⊥�>)�?(>®∀x.x 6= 42), (>®⊥)®!(⊥�ω)

P?
der ` (⊥�>)�?(>®∀x.x 6= 42),?((>®⊥)®!(⊥�ω))

Pprom `!((⊥�>)�?(>®∀x.x 6= 42)),?((>®⊥)®!(⊥�ω))
P(id `⊥�>, (>®⊥)®!((⊥�>)�?(>®∀x.x 6= 42)),?((>®⊥)®!(⊥�ω))
P+

sym `⊥�>,?((>®⊥)®!(⊥�ω)), (>®⊥)®!((⊥�>)�?(>®∀x.x 6= 42))
` (⊥�>)�?((>®⊥)®!(⊥�ω)), (>®⊥)®!((⊥�>)�?(>®∀x.x 6= 42))

• Properties Regarding the Order of Moves: We have seen in Section 4.1.4 that



we can use nullary predicates together with the uniformity of the underlying strate-

gies to control the order in which moves must be played. Our single-read ‘good vari-

able’ property was an example of this. For another, we consider an object (com ->

nat -> com) -> com with a switch method and a read method. We can require

that if the read method returns 0 then the switch method has previously been

invoked.

This can be achieved by the embedding/specification

(⊥�>)�?(((>®⊥)®!(⊥�α⊕ω))®!(α�>))

*

(⊥�>)�?(((>®⊥)®!(⊥�ω))®!(⊥�>))

= i((com→ nat→ com)→ com)

using embeddings α*⊥ and α⊕ω*>⊕ω∼=ω. This embedding is not definable as

a proof, as it is not total.

Thus, we can express a large collection of behavioural properties on TotLang programs

using WS1.

5.6 Data-independent Algorithms

We can use the fact that WS1 is a general first-order logic in a quite different way: to

model data-independent programs. We introduced this idea in Section 4.1.4, and we

expand on the theme here.

We extend TotLang with a set of atomic ground types A : each φ ∈ A represents

an opaque set Vφ. For each atomic ground type φ, we introduce a type of φ-storage cells

varφ. Otherwise, the only operation available on terms of atomic type is equality testing.

We can identify A with the first order language containing a unary predicate for

each atomic ground type, and consider WSN over this language. The data type φ can

be interpreted by the formula ⊥�∃x.φ(x). We can translate programs to proofs in WS1,

and via this translation obtain their semantics as uniform winning strategies.

5.6.1 Programming Language

We extend TotLang with some new types and constants. For each unary predicate φ ∈L ,

we introduce a ground type φ and type varφ of storage cells of type φ. We also introduce

the following constants:

• All constants whose type is quantified over ground types G are extended to include

G = φ



• φ-variables: newvarφ : φ -> (varφ -> G) -> G, :=φ : varφ -> φ -> com,

!φ : varφ -> φ, mkvarφ : φ -> (φ -> com) -> varφ

• Equality testing: eq : φ -> φ -> nat where eq a b returns 0 if a = b and 1

otherwise.

In this setting, the newstack operator from Section 5.4.1 can be generalised to a stack of

φ values. Using this, newset can be typed as a function newsetφ : ((φ -> com) ->

(φ -> com) -> (φ -> nat) -> nat -> G) -> G which constructs a new set of whose

elements have type φ.

5.6.2 Embedding into WSN

We can embed this language into WSN, extending the embedding in Section 5.4. We set

tlws(φ)=⊥�∃x.φ(x) and tlws(varφ)= (⊥�∃x.φ(x))&(∀x.φ(x)�>).

Translation of Constants

• Equality φ -> φ -> nat is a simple modification of the proof in Section 4.1.4 re-

placing ∀x.⊥ by ∀x.φ(x).

• Sequencing, conditional, newvar and encaps extend to accommodate φ as an addi-

tional ground type, using the translation in Section 5.4 with G ranging over ⊥ , ω

and ∀x.φ(x).

• The translation of := and ! for φ-variables follow that of := and ! for nat variables,

with ω replaced by ∀x.⊥.

• newvarφ : φ -> (varφ -> G) -> G is translated as follows:

Pid `G,G⊥

pr pw

`⊥�∃x.φ(x)&∀x.φ(x)�>,⊥�∃x.φ(x),>®∀x.φ(x)
Pana `!var,>®∀x.φ(x)

P( `G,G⊥®!var,>®∀x.φ(x)

where G ranges over the formula representation of ground types, pr and pw are:



{x};φ(x)`>
{x};φ(x)`φ(x)

Px
∃ {x};φ(x)`∃x.φ(x)

{x};φ(x)`⊥,∃x.φ(x)

{x};φ(x)`⊥�∃x.φ(x)

{x};φ(x)`>, (⊥�∃x.φ(x))

{x};φ(x)`φ(x), (⊥�∃x.φ(x))
Px
∃ {x};φ(x)`∃x.φ(x), (⊥�∃x.φ(x))

{x};φ(x)`∃x.φ(x)® (⊥�∃x.φ(x))

{x};φ(x)`⊥,∃x.φ(x)® (⊥�∃x.φ(x))

{x}`φ(x),∃x.φ(x)® (⊥�∃x.φ(x))

`∀x.φ(x),∃x.φ(x)® (⊥�∃x.φ(x))

`>®∀x.φ(x),∃x.φ(x)® (⊥�∃x.φ(x))

`⊥,∃x.φ(x),⊥�ω,>®∀x.φ(x)

`⊥�∃x.φ(x),⊥�∃x.φ(x),>®∀x.φ(x)

{x};φ(x)`>
{x};φ(x)`φ(x)

Px
∃ {x};φ(x)`∃x.φ(x)

{x};φ(x)`⊥,∃x.φ(x)

{x};φ(x)`⊥�∃x.φ(x)

{x};φ(x)`>,⊥�∃x.φ(x)

{x};φ(x)`⊥,>,⊥�∃x.φ(x)

{x}`φ(x),>,⊥�∃x.φ(x)

`∀x.φ(x),>,⊥�∃x.φ(x)

`∀x.φ(x)�>,⊥�∃x.φ(x)
P+

wk `∀x.φ(x)�>,⊥�∃x.φ(x),>®∀x.φ(x)

• mkvar : (nat -> com) -> nat -> var follows the TotLang embedding of mkvar

for the nat type.

p′

Pid `⊥�∃x.φ(x),>®∀x.φ(x)
P+

wk `⊥�∃x.φ(x),>®∀x.φ(x), (>®⊥)®!(⊥�∃x.φ(x))

`⊥�∃x.φ(x)&∀x.φ(x)�>,>®∀x.φ(x), (>®⊥)®!(⊥�∃x.φ(x))
P?

der `⊥�∃x.φ(x)&∀x.φ(x)�>,?(>®∀x.φ(x)),?((>®⊥)®!(⊥�∃x.φ(x)))

where p′ is:



Pid
{x};φ(x)`⊥,>

{x};φ(x)`>
{x};φ(x)`φ(x)

Px
∃ {x};φ(x)`∃x.φ(x)

{x};φ(x)`⊥,∃x.φ(x)

{x};φ(x)`⊥�∃x.φ(x)
Pprom

{x};φ(x)`!(⊥�∃x.φ(x))
Pmul⊗

{x};φ(x)`⊥⊗!(⊥�∃x.φ(x)),>
{x};φ(x)`>,⊥, !(⊥�∃x.φ(x)),>

{x};φ(x)` (>®⊥)®!(⊥�∃x.φ(x)),>
{x};φ(x)`⊥,>, (>®⊥)®!(⊥�∃x.φ(x))

{x}`φ(x),>, (>®⊥)®!(⊥�∃x.φ(x))

`∀x.φ(x),>, (>®⊥)®!(⊥�∃x.φ(x))

`∀x.φ(x)�>, (>®⊥)®!(⊥�∃x.φ(x))
P+

wk `∀x.φ(x)�>,>®∀x.φ(x), (>®⊥)®!(⊥�∃x.φ(x))

Denotational Semantics

Define an instantiation of A to be a set V and family of subsets {Vφ ⊆ V : φ ∈ A }.

From each instantiation we define the A -structure LV whose underlying set is V and

IL(φ)(v) = tt if and only if v ∈ Vφ. Conversely, any such A -structure gives rise to an

instantiation.

We can give denotational semantics of this language as follows:

• Each program type maps to a sequent of WS1, and semantics of this sequent is a

functor M; →Ge. Thus, program types can be given semantics as such functors.

• Each program M : T maps to a WS1 proof of ` tlws(T), which maps to a uniform

winning strategy on I ⇒ JTK= Jtlws(T)K.

Thus, given an instantiation V and program M we can extract a winning strategy on

JMK(LV ). Further, the behaviour of the resulting family of strategies is uniform with

respect to the instantiated ground types.

This chapter has further demonstrated the expressivity of WS1, exhibiting a variety

of stateful programs and properties upon them. This concludes the development of the

WS logics of this thesis: in the next chapter we consider further directions.



Chapter 6

Further Directions

We consider some possible extensions of the work presented in this thesis.

In this thesis, we have presented a first-order logic where the computational content

of a proof is stateful, together with full and faithful completeness results with respect

to its simple game semantics. There are a number of further directions, both in breadth

and depth, that the work can now take.

We have seen how we can use WS1 for specifying behavioural properties of impera-

tive programs. We can seek to extend WS1 to express a larger variety of programs, and

a larger variety of properties upon them.

6.1 Polymorphism

The atoms described in Chapter 4 are truly atomic: they range over truth and falsity, the

0- and 1-move basic games. One further direction is to consider support for propositional

variables, which range over arbitrary games. For example, there are copycat morphisms

on A⊗B (B⊗A and A⊗(A (B)(B whose underlying structure (the flow of data) can

be expressed independently of the underlying games A and B (uniformly). We wish to

capture such strategies as proofs. On the program side, this would allow us to represent

polymorphic programs in our logic. In such a setting the following rule should be sound,

when M is an arbitrary (negative) formula and X is a propositional variable:

∆`Γ
∆`Γ[M/X ]

This does not hold for the atoms of WS1: contraction α ( α⊗α is provable and

semantically valid, but its interpretation does not scale to arbitrary games. There is a

winning strategy on α( α⊗α because our games model enforces local alternation. In



the setting of [49], strategies need not be locally alternating, and one-move atoms do

suffice to represent propositional variables and copycat strategies. In our setting, one

approach to describing polymorphic strategies as proofs is via move variables, where a

proof explicitly remembers moves that have been played by the environment. We sketch

this approach here.

For simplicity, our starting point will be WS. The grammar of formulas will be ex-

tended with propositional variables, which come in negative (X ) and positive (X ) pairs.

The intended interpretation is that X represents an arbitrary negative game, and X

denotes X⊥. Thus sequents will be equipped with “contexts”: finite sets ∆ of proposi-

tional variables currently in scope. Then ∆` Γ will be interpreted as a family of games,

indexed by assignments ∆→G .

We next consider core introduction rules for X and X . Looking at the semantics, if

Opponent is to play and his first move is in a propositional variable X , then Opponent

can play any starting move in X , which denotes an unknown game. But if Opponent

does play some move m, the proof term will then “know” that m is a valid opening move

in X , and may play it on subsequent occasions, following [2]. Our epistemic terminology

is a metaphor: we can define uniform strategies in this manner, in the same sense as

in our first-order logic WS1. Using this approach, we must also be able to express the

positive game with plays {s : ms ∈ PX } as a formula — we choose Xm (the overline is

used to denote polarity). Continuing this process, we require formulas Xs and Xs for

each sequence of move variables s:

P := . . . | X s

N := . . . | Xs

Resultantly, contexts must be enriched further, containing information such as s : X

where s is a sequence of move variables and X is a propositional variable. The core rules

for propositional variables could be presented as follows:

Γ, sm : X ,Γ′ `⊥, Xsm,∆
Γ, s : X ,Γ′ ` Xs,∆

Γ, sm : X ,Γ′ `>, Xsm,∆

Γ, sm : X ,Γ′ ` X s,∆

Using this approach we hope to develop a full completeness result: each finite uniform

strategy is the denotation of a unique analytic proof; each uniform strategy is the deno-

tation of a unique infinitary analytic proof.

We would also like to describe the proof denoting the identity map ` X , X as a finite

proof using this style. However, the underlying strategy is infinite: the identity X ( X

can have an unbounded (even infinite) number of moves, depending on the size of X .

Nonetheless, it is finitely describable because it is regular in a certain sense. We can

describe it using looping:



loop(∗)

m : X ` Xm, Xm

m : X ` XmOXm

m : X `>, XmOXm

m : X `>, Xm, Xm

m : X ` X , Xm

m : X ` XmOX
m : X `⊥, XmOX

m : X `⊥, Xm, X

∗ :: X ` X , X

Here, after the first two moves are played we can loop back and repeat, since the

formula reached is a special case of one of its parents (the node marked with an ∗).

Using this approach, we can seek to construct finite analytic proofs (with looping) of

each of the non-core rules: modelling the explicit flow of data in the copycat strategies

that they represent.

We can also consider the question of definability — which finitely describable but

infinite-behaviour uniform strategies are definable as proofs? This can be addressed by

considering the uniform strategies that are in some sense regular (the looping proofs can

be related to finite automata).

6.2 Recursive Types

We have expressed an infinite stack in our logic using the exponentials, but it seems

possible to give a treatment of infinite datatypes in a more principled way. In partic-

ular, we wish to introduce infrastructure for supporting recursive types into our logics.

For example, a type of Boolean lists could be represented as νX .⊥� (>⊕ (>® (B⊗ X ))).

This could be useful from the programming perspective, allowing an embedding of lan-

guages with recursive types. But it is also interesting from the (purely) game semantic

perspective: we have already used coinductive definitions for ! and ω, and there is no

reason this technique could not be generalised. In particular, we can introduce formulas

νX .F(X ) denoting the final coalgebra of the endofunctor F. Thus, !A = νX .A ® X and

ω = νX .⊥&X . The type νX .A⊗ X would represent a random-access infinite array of A

values that could be accessed in any order, where interaction in one component can affect

the behaviour in other components interrogated in the future.

To do this, we would need to check that each such F has a final coalgebra in W . The

work in [20] shows a similar result for a category of arena games and innocent strate-

gies, under a different set of logical operations. We conjecture that each functor made up



of variables and WS type constructors has a final coalgebra, following the constructions

given in the ! and ω cases. In the setting of [20], a class of definable functors also have

initial algebras, which differ from the final ones only in their winning conditions. Per-

haps there is some natural restricted class of WS expression-functors that have initial

algebras, which could be denoted by corresponding catamorphism rules.

6.3 Partiality and Universality

It is known that the category G has a universal object — a game U such that for each

(countable) game G there is an embedding G *U [51, 57]. In particular, U is the de-

notation of the type nat→ nat in a stateful call-by-value language. Further, if G is the

denotation of a type, then its embedding into U can be expressed as a program (in a

sufficiently expressive language), which is a useful tool for proving definability and full

abstraction [51,57]. This universal object can be expressed in WSN as !(ω�ω). Can the

embeddings from each of the other formula objects be encoded using the rules of WS1?

(i.e. just using the coalgebraic structure, without access to arbitrary recursion.)

We have also considered adding a general fixed point operator to WS!. This “logic” is

inconsistent, but can be used as a low-level language for describing imperative programs

with general recursion. This logic (PS) replaces the anamorphism rule by a least fixed

point operator:

Φ` A, A⊥

Φ` A

We have shown that the retractions into the universal type are definable in PS, and used

this to show that each computable strategy is representable as a proof in PS.

6.4 Other Exponential Structures

Our choice of games model as a fundamental primitive has inspired our logic through-

out: the rules for each connective reflect its chosen semantic interpretation. This is

reasonable, because we have chosen their standard interpretation, as found in e.g. [36].

In the case of the exponential there are multiple choices: [58] identifies three linear ex-

ponential comonads on G . As well as the sequoidal exponential studied in Chapter 3,

one may also consider exponentials that allow Opponent to backtrack to any point in

the play so far. There are two known variants of this — the sequential algorithms expo-

nential, which does not allow repetition [52], and the exponential of [31] which does. In

our development we have chosen to study the sequoidal exponential due to its ability to



model stateful languages and its simple algebraic properties. But one can also consider

how we can extend WS with the other backtracking exponentials.

We first discuss the non-repetitive backtracking sequential algorithms exponential

[13,22,52]. This exponential is the only one of the three that preserves finiteness of the

underlying games. Thus in one sense it would have been a natural choice of exponential

to model, since all formulas would represent finite games, which are only inhabited by

finite strategies, and so we need only consider finite analytic proofs in our full complete-

ness results. However, it would be inadequate for modelling state.

This exponential can be accommodated in an extension to WS. We introduce unary

operators ! and ?, each of which acts on both positive and negative formulas, preserving

polarity — the backtracking player need not be the starting player. The proof system

exploits some key isomorphisms: in particular !(⊥�P)∼=⊥�!P. The resulting logic uses

![_] as a structural, focusing connective, so sequents are no longer just lists, but are of

the form

S := M | P | S, M | S,P | ![S] | ?[S].

Contexts are given by

C{_} := _ | C{_}, M | C{_},P | ![C{_}] | ?[C{_}]

and each sequent decomposes into a context and a focus. The core proof rules for WS!L

(WS with the sequential algorithms exponential) are given in Figure 6-1. The rules can

be given semantics using the non-repetitive backtracking exponential, and we can show

that these semantics satisfy full and faithful completeness.

Expressing the repetitive backtracking exponential of [31] would be a pleasing goal,

since it allows innocent strategies over an arena to be expressed. Speculating, one could

perhaps represent both innocent and history-sensitive strategies in a combined setting,

with different types representing the observational power of the strategies in question.

This would add further power to the programme of using our logic for expressive typing

of imperative programs — namely, sound type annotations for when they do not exhibit

stateful behaviour.

One approach to representing this exponential in our proof system is to combine the

backtracking behaviour of the sequential algorithms ! with the duplication behaviour of

the sequoidal exponential — exploiting the isomorphism !↑P ∼= ↑ !P ® !↑P. Starting with

WS!L, we replace the rules for the interaction of ! and lifts by rules such as

` C{⊥, !P, !(⊥®P)}
` C{![⊥,P]}

We conjecture that this leads to full and faithful completeness, with each strategy

representable as a unique (possibly infinitary) analytic proof.



Figure 6-1: Core proof rules for WS!L

` C{(M�N)&(N�M)}
` C{M⊗N}

` C{(P�Q)⊕ (Q�P)}
` C{POQ} ` C{1}

` C{⊥,POQ}
` C{⊥,P,Q}

` C{⊥,P�N)}
` C{⊥,P, N}

` C{⊥, !P}
` C{![⊥,P]}

` C{⊥,?P}
` C{?[⊥,P]}

` P
`⊥,P

` N
`>, N

` C{>, M⊗N}
` C{>, M, N}

` C{>, N�P}
` C{>, N,P}

` C{>, !N}
` C{![>, N]}

` C{>,?N}
` C{?[>, N]}

` C{A, N}
` C{A�N}

` C{A,P}
` C{A�P}

` C{![A]}
` C{!A}

` C{?[A]}
` C{?A}

` C{?M&?N}
` C{?[M&N]}

` C{(M�P)&(N�P)}
` C{M&N,P}

` C{(M1�N)&(M2�N)}
` C{M1&M2, N}

` C{!M⊗!N}
` C{![M&N]}

` M ` N
` M&N

` C{(P�M)⊕ (Q�M)}
` C{P ⊕Q, M}

` C{!P⊕!Q}
` C{![P ⊕Q]}

` C{(P1�Q)⊕ (P2�Q)}
` C{P1 ⊕P2,Q}

` C{?PO?Q}
` C{?[P ⊕Q]}

` P
` P ⊕Q

` C{>}
` C{>,P}

` C{⊥}
` C{⊥, N}

`Q
` P ⊕Q



6.5 Other Game Models

Our logic is explicitly based upon Curien-Lamarche games, for reasons we have made

clear in the introduction, but one could consider WS-style logics for other games mod-

els. In particular, our strategies are deterministic, and locally alternating. One could

consider a setting of Conway games, dropping the latter condition. In this case it would

make sense to combine positive and negative formulas into a single class (since there

are Conway games in which either player can start), and instead use two turnstiles `+

or `− which specifies whether we are considering O-starting strategies or P-starting

strategies. The rules will also need to be changed, since the linear functional extension-

ality isomorphism (which justifies P�
⊥ ) does not hold for Conway games, but we instead

have an adjunction Cs(A ( B,C) ∼= Cs(B,C ® A) [45]. To represent nondeterministic

strategies, we will (at least) need another rule for PO and P⊕, representing when both

branches can be taken.

In [50], a number of game models are considered, which can be differentiated ab-

stractly by considering the algebraic properties of the sequoid. These differing algebraic

properties could correspond to differing logical rules in systems such as ours.

6.6 Program Extraction

We can ask the following question: Given a logical formula M, which program types

T are such that M is a (definable) specification on tlws(T)? Given a proof p ` M, we

could then compose p with the embedding, yielding a proof of ` tlws(T) that might cor-

respond to some (imperative) program — the computational content of p. Presence of a

universal type [57] in our games model (with definable retractions in a language with

recursion and coroutines [51]) ensures that each computable strategy on a type object

is the denotation of some program, and semantics of WS1 proofs are computable in this

sense.

As an example, the formula A =⊥�>®∀x.⊥�∃y.(y+1= x⊕ x = 0) can be equipped

with an embedding into the interpretation of the TotLang type nat→ nat following the

scheme in Section 5.5.3. Proofs of A correspond to (constructive) proofs that each ele-

ment either has a predecessor, or is zero. Given any such proof, we can extract a program

on type nat→ nat which computes the predecessor of a nonzero value. The result of ap-

plying the program to 0 depends on the choice of y in such cases in the proof: the proof ’s

computational content.

This pattern generalises. Consider ⊥� (>®∀xi.⊥�)n∃y.φ(−→s ) where each si has

free variables in {y, x1, . . . , xn}. This is a specification on the program natn -> nat and



a program extracted from a proof computes for each −→xi a corresponding y such that

φ(y, x1, . . . , xn) holds. Such formulas correspond to Π2 formulas of the arithmetic hier-

archy, and if n = 0 they correspond to Σ1 formulas. Programs of type nat -> com cor-

respond to Π1 formulas. The relationship between formulas of higher arithmetic com-

plexity and TotLang types is more subtle, due to the presence of exponentials in the

translation of program types, and could be worthy of further study.

On a similar theme, we have seen that we can add peano-style axioms to WS to

describe a game of natural numbers. Are there any new, stateful proofs of interest-

ing statements of arithmetic, corresponding to imperative programs on the underlying

datatypes?
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Appendix A

Agda Formalisation

In this appendix we formalise the foundations of this work in the proof assistant Agda.

This includes finitary game semantics, the syntax and semantics of WS, the full complete-

ness procedure, and embedding of a finitary programming language. We also implement

a Strategy Interaction tool allowing a user to dynamically interact with the strategy se-

mantics of a WS proof.

Remark We only give an outline of the Agda formalisation here. The full code can be

found online at [18]. The work in this appendix was created in collaboration with Makoto

Takeyama.

We next describe a formalisation of game semantics and some of the work so far

in the proof assistant Agda [11]. The Curry-Howard isomorphism between proofs and

programs can in principle be used to write proofs in a programming language, using

the type checker verify the proofs. But to express proofs of interesting propositions,

dependent types are required. Agda is a dependently typed functional programming

language, and a proof assistant, based on Martin-Löf type theory [61].

We will first show how finite games and connectives; strategies and composition can

be formalised inside type theory and Agda. This is quite different to the usual set theo-

retic presentation, and provides some advantages and some disadvantages. We will then

show how the logic WS can be embedded, give game semantics of proofs, and formalise

the full completeness procedure. We will also formalise syntactic cut elimination.

We will then show how a finitary language can be embedded inside (our Agda em-

bedding of) WS, following the ideas in Chapter 5 with bounds on variable usage. This

mechanises the game semantics of such a language, by composing this embedding with

the proof semantics. Finally, we will show how Agda can be used as a tool for “running”

strategies in a user-friendly manner.



A.1 Game Semantics and Agda

We first formalise basic concepts of game semantics in type theory, in particular in Agda.

The definitions of games, strategies, and operations on games are strikingly simple: in

some sense more simple and concise then their set-theoretic counterparts. For example,

we will see that implication, tensor and sequoid can be defined mutually, in a very con-

cise manner. This is in contrast to the intricate definitions one usually sees: sequences

of elements of the union of move sets, satisfying restriction properties. Composition is

similarly given a simple, mechanical definition, and the fact that it type checks at all en-

sures immediately that prefix closure and determinacy are preserved, while in the usual

set-theoretic presentation these are results that must be proved.

A.1.1 Games as Forests

The key piece of data in our definition of a CL-game is the set of plays. Given any game

A, we can assume that for each move m there is a minimal play sm such that for any

play t containing m, t w sm. Whenever a move is considered it is always in the context

of a play, and identical moves in different positions in the play forest can be replaced by

distinct moves. Given such a game, we can then infer the Opponent-Player labelling by

the location of a move: m is an Opponent-move if and only if it is in an odd position of

sm and bA = O, or it is in an even position in sm and bA = P. Thus the data is reduced

to a polarity, a set of moves, and a prefix closed set of sequences. This is just a polarity

together with a forest that can branch arbitrarily.

Definitions in type theory are inductive, and an inductive definition of a forest can

be given as follows:

Definition A forest is a pair (X , f ) where X is a set and f is a family of forests, indexed

by X .

We will treat f as a function from X to the collection of forests. We will call it the

children-function, mapping a node x to its children, a forest. We can form the empty

forest I = (;, i) where i is the unique map whose domain is the empty set. We can

construct a forest with one root node with two children as follows: ({q},λq 7→ ({t, f }, [t 7→
I, f 7→ I])), and so on.

We can define forests in Agda:

data Forest : Set1where

gam : {X : Set}→ (X→ Forest)→ Forest

The type Forest has one constructor, gam, of the given type. The curly brackets {}

indicate a hidden argument: the set X itself need not actually be given, because it can be



inferred from the codomain of the given f . This is an inductive definition: the resulting

semantics is the initial algebra, containing forests of finite depth.

The collection of forests forms a proper class, not a set. Similarly, we have Forest :

Set1 rather than Forest : Set. It will be technically useful to restrict the definition

of Forest so that it has type Set1. We can modify the definition of forest so that the

collection of forests does form a set. Fix a set U such that each element of U is a set, U

contains the empty and singleton sets, and U is closed under disjoint union (such a set

U can be readily shown to exist).

Definition A restricted forest is a pair (X , f ) where X ∈ U and f is a family of forests,

indexed by X .

The collection of restricted forests does form a set — it is the initial algebra of the

functor X 7→ (U : U )× (U → X ). We will henceforth assume all forests are restricted, and

use the term forest to refer to restricted forests. Let F denote the set such forests.

We can define the restricted version of Forest in Agda. First, we define U via a

grammar mov of move encodings:

dataMovEnc : Setwhere

nil : MovEnc

one : MovEnc

_++_ : MovEnc→MovEnc→MovEnc

U is defined to be the image of mov under a semantic mapping T : mov→ Set. In ZF set

theory, the axiom of substitution (ZF8) ensures that this is a set.

T : MovEnc→ Set

T nil = ⊥ -- empty set

Tone = > -- singleton set

T (x ++ y) = T x]T y -- disjoint union

We can define the type of restricted forests as follows:

data Forest : Setwhere

gam : {ι : MovEnc}→ (T ι→ Forest)→ Forest

We can interpret each forest as a negative game, or as a positive game. We will use

1This is so that we can use standard library operations, which often defined on Set rather than Set1.
Actually, in the current version of Agda this is no longer necessary as library functions are given universal
definitions that work for SetX for arbitrary X (universe polymorphism). But we chose not to use this for
simplicity.



Game : Set

Game = Forest

to represent games without a polarity. We define two operations on games: Mov G is

the set of starting moves of G, and if i is such a starting move G � i is the resulting

subgame.

Mov : Game→ Set

Mov (gam {a} f) = Ta

_�_ : (G : Game)→MovG→Game

(gam {ι} f) >> i = f i

A.1.2 Connectives on Forests

We next give the definition of I, o, ×, ⊗, ® and ( on forests. These can be interpreted

as operations on games as follows:

Forest Negative Game Positive Game

I 1 0
o ⊥ >

A×B A&B A⊕B

A⊗B A⊗B AOB

A®B A®B A�B

A (B A (B = B�A⊥ B® A⊥

Empty game I

In this case the set of root nodes is the empty set, and the children-function f is the

unique map from the empty set into Game. This is called ⊥-elim in the Agda standard

library:

I : Game

I = gam {nil}⊥-elim

Single-move game o

The set of root nodes (starting moves) is the singleton set {q}, denoted one in our Agda

development. Then q has no children, so the children-function is the map q 7→ I.

o : Game

o = gam {one} (λ → I)



Product ×

The set of starting moves of A ×B is the disjoint union of the starting moves of A and

the starting moves of B. The children of inj1(a) in A ×B is just the children of a in A,

and the children of inj2(b) in A×B is just the children of b in B. Hence we can define ×
as follows:

_×_ : Game→Game→Game

gam { i} f× gam {j} g = gam { i ++ j} [f,g]

Here [_,_] denotes copairing.

Tensor ⊗, sequoid ®, implication (

We can swiftly deal with the remaining binary operators:

mutual

_(_ : Game→Game→Game

G( (gam { i} f) = gam { i} (λ e→ f e⊗G)

_®_ : Game→Game→Game

(gam { i} f)®G = gam { i} (λ e→G( f e)

_⊗_ : Game→Game→Game

G⊗H = (G®H)× (H®G)

We next explain these definitions. The decomposition of ⊗ into the product of two se-

quoids should be clear. For the other cases, let’s view our forests as negative games.

For the definition of (, note that the starting moves of A (B are the starting moves

of B. Next, Player can chose to either remain in B or switch to A, and after that continue

to switch back and forth at will. That is, the starting player in the children of b in A (B

begins a play in f (b)⊗ A, where f is the children-function of B. Thus XA(B = XB and

fA(B(b)= fB(b)⊗ A.

For the definition of ®, the starting moves of A®B are the starting moves of A. Next,

Player must play a move in A (since in ® it is Opponent that switches). Next, Opponent

may chose to play in A or B, and later switch between them. Note then that after the

initial move a in A®B the game forest is B ( fA(a).

The decomposition of ⊗ into ® is reflected in the P⊗ rule, and the other relationships

above are reflected in the core elimination rules of WS.



A.1.3 Strategies

We next define the notion of (winning) strategy on a game2. A positive strategy on a

forest is a strategy on the forest for the starting player, a negative strategy is a strategy

for the player who plays second (the secondary player).

A strategy for the starting player on a forest (X , f ) is an element x of X together

with a strategy on f (x): but for the secondary player, since the starting player on (X , f )

becomes the secondary player on f (x). A strategy for the secondary player on (X , f )

consists of, for each x ∈ X that could be played be the starting player, a response. This

response is a strategy for the starting player on f (x). Thus we obtain the following

mutually recursive definition of strategy, parametrised by polarity:

data Strat : Pol→Game→ Setwhere

pos : ∀ {G}→ (i : MovG)→ Strat - (G >> i)→ Strat+G

neg : ∀ {G}→ ((i : MovG)→ Strat+ (G >> i))→ Strat - G

Remark We can equivalently view a Strat - X as a strategy for Player on the negative

game whose underlying forest is X, and a Strat + X as a strategy for Player on the

positive game whose underlying forest is X.

A.1.4 Composition

We next define composition of strategies. To compose strategies σ : M ( N and τ :

N ( L, one typically considers parallel composition plus hiding. In Agda, we can give a

mechanical definition of composition by a mutual induction. We first define the following

simple procedure, taking a positive strategy on A⊗B and yielding a positive strategy on

B⊗ A:

swp : ∀ {BC}→ Strat+ (C⊗B)→ Strat+ (B⊗C)

swp (pos (inj1 x) f) = pos (inj2 x) f

swp (pos (inj2 y) f) = pos (inj1 y) f

We can now define composition of strategies:

mutual

_•1_ : ∀ {ABC}→ Strat - (A(B)→ Strat - (B(C)→ Strat - (A(C)

σ •1 (neg g) = neg (λ c→σ •2 (g c))

_•2_ : ∀ {ABC}→ Strat - (A(B)→ Strat+ (C⊗B)→ Strat+ (C⊗A)

2In that which follows we will leave the term “winning” implicit. Since our games here are finite, these
are the total strategies.



σ •2 (pos (inj1 c) g) = pos (inj1 c) (σ •1 g)

(neg f) •2 (pos (inj2 b) g) = swp $ g •2 (swp $ f b)

_•_ : ∀ {ABC}→ Strat - (B(C)→ Strat - (A(B)→ Strat - (A(C)

σ • τ = τ •1 σ

The dollar operation is just right-associative application. In the above definitions

we have removed some hidden arguments that have had to be manually specified, for

readability (and we will continue to do so, the full version can be found in [18]).

We next give some intuition behind the above definitions. To give a strategy on

A ( C we must give a positive strategy on A⊗C(c) for each c ∈ C. But given such a c,

we can provide it as an input to τ which gives us a positive winning strategy on B⊗C(c).

We have hence reduced the problem to composing a negative strategy on A ( B and a

positive strategy on B⊗C to yielding a positive strategy on A⊗C.

For the second procedure, suppose our second argument begins with a move c in C.

Then we are provided with a negative strategy on B (C(c). Then we can output c in our

positive strategy result, and so we only need to provide a negative strategy on A (C(c).

This can be obtained by composing our first argument with the aforementioned negative

strategy we have obtained from our second argument.

If the second argument begins with a move in b, then we are given a negative strat-

egy on C ( B(b). We can input this move to our first argument, yielding a positive

strategy on A⊗B(b), which we can swp to obtain a positive strategy on B(b)⊗A. We can

then use our second composition procedure to compose this with the negative strategy

on C ( B(b), yielding a positive strategy on C ⊗ A. Finally we can swp this to give a

positive strategy on A⊗C.

This corresponds to the standard definition of composition: the second procedure

corresponds to when it is Player’s turn to play a move, and he has a choice between two

of the three components of the interaction sequence. We have otherwise just identified

the symmetry between A and C.

This definition is more concise than the set-theoretic one, and immediately guaran-

tees well-definedness. On the other hand, it does require more explanation. It corre-

sponds explicitly to the “token pushing” mechanics of strategy composition as described

by Curien [23]. ’

Remark This definition of composition is related to syntactic cut elimination for WS

given in Section 2.5.1. In particular, •2 corresponds to cut2 and swp to POsym.



A.1.5 Isomorphisms

We next define game isomorphisms in Agda. An isomorphism between games A and

B will be a pair of strategies A ( B and B ( A of zig-zag shape: we will not (for our

purposes) include a proof that the two strategies in question are inverses. To recall, a

strategy on A (B is zig-zag if Player always switches components: the response to each

O-move in A (resp. B) is a P-move in B (resp. A) [54]. Concretely, it is a strategy on the

following game:

_(c_ : Game→Game→Game

G(c (gam { i} f) = gam { i} (λ e→G®c f e)
where_®c_ : Game→Game→Game

(gam { i} f)®c G = gam { i} (λ e→G(c f e)

It is more convenient to introduce a new data type that is equivalent to

Strat - (A(c B)

rather than dealing with strategies on this game directly. We write A 4 B for this type.

An isomorphism A ≈ B is defined to be a pair A 4B and B 4 A.

data_._ : Game→Game→ Setwhere

sim : ∀ {AB}→
(h : MovB→MovA)→
((e : MovB)→ (B >> e). (A >> (h e)))→
A.B

This is similar to a morphism of paths in the underlying games, apart from the fact

that the direction of the morphism is switched at each level of the forest to account for

Opponent-Player duality. We can show in Agda that 4 is reflexive and transitive:

id. : ∀ {G}→G.G

id. {gam f} = sim id (λ i→ id. {f i})

_.◦._ : ∀ {ABC}→B.C→A.B→A.C

(sim f f').◦. (sim g g') = sim (g ◦ f) (λ x→ g' (f x).◦. (f' x))

We can define an isomorphism to be the symmetric closure:

data_≈_ : Game→Game→ Setwhere

bsm : ∀ {AB}→B.A→A.B→A≈B

_^-1 : ∀ {MN}→M≈N→N≈M

(bsm f g)^-1 = bsm g f



For example, we can give an isomorphism M⊗N ∼= N ⊗M:

sym⊗ : ∀ {MN}→ (M⊗N)≈ (N⊗M)

sym⊗ {gam f} {gam g}

= bsm (sim [ inj2, inj1 ] [(λ → id.), (λ → id.)])

(sim [ inj2, inj1 ] [(λ → id.), (λ → id.)])

We next show how we can convert an isomorphism to a copycat strategy, if needed:

copycat : ∀ {AB}→A.B→ Strat - (A(B)

copycat (sim f g) = neg (λ b→ cc (f b) (g b))

where cc : ∀ {AB}→ (m : MovA)→B. (A >> m)→ Strat+ (B⊗A)

ccm p = pos (inj2 m) (copycat p)

We can use this to give an operation which composes a strategy with an isomorphism.

A.1.6 Categorical Structure

We can also formalise the structure needed to show that G f is a WS-category. The op-

erations on games are described as above; we can define the action of ⊗ and ( on mor-

phisms in a combinatorial manner:

mutual

_⊗s_ : ∀ {ABCD}→ Strat - (A(B)→ Strat - (C(D)

→ Strat - ((A⊗C)( (B⊗D))

(neg f)⊗s (neg g)

= neg [(λ x→ f x⊗s1 (neg g)),

(λ x→ (g x⊗s1 (neg f)) ◦≈ ( ⊗≈ sym⊗))]

_⊗s1_ : ∀ {ABCD}→ Strat+ (B⊗A)→ Strat - (C(D)

→ Strat+ ((D(B)⊗ (A⊗C))

(pos (inj1 x) f)⊗s1 σ = pos (inj1 x) (f⊗sσ)

(pos (inj2 y) f)⊗s1 σ = pos (inj2 (inj1 y)) (σ(s f)

_(s_ : ∀ {ABCD}→ Strat - (C(A)→ Strat - (B(D)

→ Strat - ((A(B)( (C(D))

σ(s (neg g) = neg (λ x→σ(s1 (g x))

_(s1_ : ∀ {ABCD}→ Strat - (C(A)→ Strat+ (D⊗B)

→ Strat+ ((D⊗C)⊗ (A(B))

σ(s1 τ = ((τ ◦≈ sym⊗)⊗s1 σ) ◦≈ sym⊗

where:



_⊗≈_ : ∀ {MN}O→M≈N→ (O⊗M)≈ (O⊗N)

The product structure is simple. For the sequoid we have to define strictness. A strict

strategy on A (B is a strategy on A(̂B where:

_(�_ : Game→Game→Game

G(� (gam { i} f) = gam { i} (λ e→G® f e)

We also need to check that the identity is strict and composition preserves strictness,

which can be achieved by refining the type of copycat above and defining strict form of

composition.

copycat_st : ∀ {AB}→A.B→ Strat - (A(�B)

copycat_st (sim f g) = neg (λ b→ cc (f b) (g b))

where cc : ∀ {AB}→ (m : MovA)→B. (A >> m)→ Strat+ (A®B)

ccm p = posm (copycat p)

_•�_ : ∀ {ABC}→ Strat - (B(� C)→ Strat - (A(�B)→ Strat - (A(� C)

We can then define the action of ® on (strict) strategies.

We can define isomorphisms such as associativity of ⊗, the action isomorphisms for

®, decomposability, linear functional extensionality etc. We give some examples:

lfe : ∀ {MN}→ (M(N)(o≈ (N(o)®M

lfe = bsm (sim id (λ → id.)) (sim id (λ → id.))

mutual

pasc( : ∀ {MNO}→M( (N(O)≈ (M⊗N)(O

pasc( = bsm (sim id (λ i→ ( ⊗. (wk2 $ sym⊗)).◦. (wk1 $ asc⊗)))

(sim id (λ i→ (wk2 $ asc⊗).◦. ( ⊗. (wk1 $ sym⊗))))

asc⊗ : ∀ {MNO}→ (M⊗N)⊗O≈M⊗ (N⊗O)

asc⊗ = bsm (sim [[ inj1, inj2 ◦ inj1 ], inj2 ◦ inj2 ]

[[(λ i→ (wk2 (sym⊗).( ).◦. (wk1 $ pasc())

, (λ i→wk2 $ psym()], (λ i→wk2 $ pasc()])

(sim [ inj1 ◦ inj1, [ inj1 ◦ inj2, inj2 ]]

[(λ i→ (wk2 $ pasc().◦. (wk1 (sym⊗).( ))

, [(λ i→wk2 $ psym(), (λ i→wk1 $ pasc()]])

psym( : ∀ {MNO}→M( (N(O)≈N( (M(O)

psym( = pasc(≈◦≈ (sym⊗≈( )≈◦≈ (pasc(^-1)

pasc® : ∀ {MNO}→ (M®N)®O≈M® (N⊗O)

pasc® = bsm (sim id (λ i→ (wk2 (sym⊗).( (m i)).◦. (wk1 $ pasc()))



(sim id (λ i→ (wk2 $ pasc().◦. (wk2 (sym⊗).( )))

psym® : ∀ {MNO}→ (M®N)®O≈ (M®O)®N

psym® = pasc®≈◦≈ ( ®≈ sym⊗)≈◦≈ (pasc®^-1)

In the final definition, we see how infix notation and unicode allows us to write Agda

definitions that look like the categorical semantics. We can use the machinery above to

give game semantics WS proofs.

A.2 WS and Agda

A.2.1 Formulas and Proofs

It is straightforward to formalise the syntax of WS in Agda. We define an inductive type

for formulas, parametrised on polarity; and an inductive type for proofs, parametrised

on the sequent that they are proving.

data Fml : Pol→ Setwhere

F0 : Fml+

F1 : Fml -

F⊥ : Fml -

F> : Fml+

_⊗_ : (MN : Fml -)→ Fml -

_par_ : (PQ : Fml+)→ Fml+

_⊕_ : (PQ : Fml+)→ Fml+

_&_ : (MN : Fml -)→ Fml -

_®_ : ∀ {p}→ (A : Fml p) (M : Fml -)→ Fml p

_<|_ : ∀ {p}→ (A : Fml p) (P : Fml+)→ Fml p

_⊥' : {p : Pol}→ Fml p→ Fml (¬ p)

F0⊥' = F1

...

dataCtx : Setwhere

ε : Ctx

, : ∀ {p}→ Fml p→Ctx→Ctx

[ ] : ∀ {p}→ Fml p→Ctx

[A] = A,ε

, , : Ctx→Ctx→Ctx

data Seq (p : Pol) : Setwhere

, : Fml p→Ctx→ Seq p



[ ] s : ∀ {p}→ Fml p→ Seq p

, ,0_ : ∀ {p}→ Seq p→Ctx→ Seq p

...

-- Predicate: ctxpol p ∆ holds if all elements in ∆ have polarity p.

data ctxpol (p : Pol) : Ctx→ Setwhere

ε : ctxpol p ε

, : ∀ {Γ}→ (P : Fml p)→ ctxpol pΓ→ ctxpol p (P,Γ)

-- Proof rules of WS

data`_ : ∀ {p}→ Seq p→ Setwhere

P1 : ∀ {Γ}→` F1,Γ

P> : ` F>,ε

P⊗ : ∀ {MNΓ}→`M,N,Γ→`N,M,Γ→`M⊗N,Γ

P& : ∀ {MNΓ}→`M,Γ→`N,Γ→`M&N,Γ

P⊥+ : ∀ {P : Fml+}→`P,ε→` F⊥,P,ε

P⊥- : ∀ {N : Fml -} {Γ}→` F⊥,Γ→` F⊥,N,Γ

P⊥® : ∀ {P : Fml+} {NΓ}→` F⊥,P®N,Γ→` F⊥,P,N,Γ

...

P⊗T : ∀ {pMN∆} {Γ : Seq p}→`Γ, ,0 M,N,∆→`Γ, ,0 M⊗N,∆

PparT : ∀ {pPQ∆} {Γ : Seq p}→`Γ, ,0 P,Q,∆→`Γ, ,0 PparQ,∆

P⊕T1 : ∀ {pPQ∆} {Γ : Seq p}→`Γ, ,0 P,∆→`Γ, ,0 P⊕Q,∆

Pwk : ∀ {p∆} {Γ : Seq p} {M : Fml -}→`Γ, ,0 M,∆→`Γ, ,0 ∆

Pcut : ∀ {p∆Γ1 } {Γ : Seq p} {M : Fml -}→ ctxpol +∆→
`Γ, ,0 M⊥',Γ1 →`M,∆→`Γ, ,0 ∆, ,0 Γ1

...

A.2.2 Semantics of Sequents

Semantics of Formulas

We can give semantics of formulas and sequents as games.

J_K : {p : Pol}→ Fml p→Game

J F1 K = I

J F⊥ K = o

J F0 K = I

J F> K = o

JM⊗N K = JM K⊗' JN K



JPparQ K = JP K⊗' JQ K
JM&N K = JM K×' JN K
JP⊕Q K = JP K×' JQ K
J_®_ {-}MN K = JM K®' JN K
J_®_ {+}PN K = JN K( JP K
J_<|_ {+}PQ K = JP K®' JQ K
J_<|_ {-}MP K = JP K( JM K

_F : ∀ {p}→ Seq p→ Fml p

_F (A,ε) = A

_F (A, ( , {-}MΓ)) = (A®M,Γ) F

_F (A, ( , {+}PΓ)) = (A<| P,Γ) F

J_K' : ∀ {p}→ Seq p→Game

JΓ K' = JΓ F K

The operators on the right hand side of the first definition are the semantic oper-

ations on games defined above, temporarily primed in the WS-semantics module for

disambiguation.

Semantics of Contexts

In order to give semantics of proof rules, we must define semantics of contexts as functors

on strict strategies and isomorphisms.

J_K- : Ctx→Game→Game

J ε K- G = G

J , {-}MΓ K- G = JΓ K- (G®' JM K)
J , {+}PΓ K- G = JΓ K- (JP K(G)

J_K.- : ∀ {MN}Γ→M.N→ JΓ K-M. JΓ K- N
J ε K.- c = c

J , {+}PΓ K.- c = JΓ K.- (JP K(. c)

J , {-}OΓ K.- c = JΓ K.- (c.® JO K)

J_K+ : Ctx→Game→Game

J_K.+ : ∀ {MN}Γ→M.N→ (JΓ K+M). (JΓ K+N)

J_K≈- : ∀ {MN}Γ→M≈N→ (JΓ K-M)≈ (JΓ K- N)

J_K≈+ : ∀ {MN}Γ→M≈N→ (JΓ K+M)≈ (JΓ K+N)

J_Kσ- : ∀ {MN}Γ→ Strat - (M(�N)→ Strat - (JΓ K-M(� JΓ K- N)

J_Kσ+ : ∀ {MN}Γ→ Strat - (M(�N)→ Strat - (JΓ K+M(� JΓ K+N)

We next formalise some simple equality proofs in Agda.



J∆K-JMK≡JM,∆K : ∀ {M : Fml -}Γ→ JΓ K- JM K≡ JM,Γ K'
J∆K-JMK≡JM,∆K ε = re�

J∆K-JMK≡JM,∆K ( , {-} Γ) = J∆K-JMK≡JM,∆KΓ
J∆K-JMK≡JM,∆K ( , {+} Γ) = J∆K-JMK≡JM,∆KΓ

J∆K+JPK≡JP,∆K : ∀ {P : Fml+}Γ→ JΓ K+ JP K≡ JP,Γ K'
J∆K-≡J,∆K : ∀ (Γ : Seq -)∆→ J∆ K- JΓ K'≡ JΓ, ,0 ∆ K'
J,∆K≡J∆K+ : ∀ (Γ : Seq+)∆→ JΓ, ,0 ∆ K'≡ J∆ K+ JΓ K'
J,∆K≡J∆K- : ∀ (Γ : Seq -)∆→ JΓ, ,0 ∆ K'≡ J∆ K- JΓ K'

We can also formalise distributivity isomorphisms.

distΓ- : ∀Γ {MN}→ JΓ K- (M×' N)≈ JΓ K-M×' JΓ K- N
distΓ- ε = id≈
distΓ- ( , {-} Γ) = (JΓ K≈- dist1)≈◦≈ (distΓ-Γ)

distΓ- ( , {+} Γ) = (JΓ K≈- dist2)≈◦≈ (distΓ-Γ)

Γ-I≈I : ∀Γ→ JΓ K- I≈ I

distΓ+ : ∀Γ {MN}→ JΓ K+ (M×' N)≈ JΓ K+M×' JΓ K+N

A.2.3 Semantics of Proofs

The structure outlined above can be used to give semantics of WS proofs:

J_K` : ∀ {p} {Γ : Seq p}→`Γ→ Strat p JΓ K'
J_K` {.p} (P1T {p} {Γ} {∆} y) = JP1TK {p} {∆} {Γ} J y K`
J_K`P> = JP>K
J_K` {.p} (P0T {p} {Γ} {∆} y) = JP0TK {p} {∆} {Γ} J y K`
J_K` {.p} (P⊗T {p} {M} {N} {∆} {Γ} y) = JP⊗TK {p} {M} {N} {∆} {Γ} J y K`
J_K` {.p} (PparT {p} {M} {N} {∆} {Γ} y) = JPparTK {p} {M} {N} {∆} {Γ} J y K`
...

Each of the remaining cases are similar, calling an auxiliary function that defines the

semantics of that rule. We give some samples:

JP1K : ∀ {Γ}→ Strat - J F1,Γ K'
JP1K {Γ} rewrite J,∆K≡J∆K- [F1] sΓ = Γ-I≈IΓ^-1≈◦σI
JP&K : ∀ {ΓMN}→
Strat - JM,Γ K'→ Strat - JN,Γ K'→ Strat - JM&N,Γ K'

JP&K {Γ} {M} {N}σ τ

rewrite J,∆K≡J∆K- [M&N] sΓ | J,∆K≡J∆K- [M] sΓ | J,∆K≡J∆K- [N] sΓ



= distΓ-Γ^-1≈◦ (σσ& τ)

JP⊗K : ∀ {ΓMN}→
Strat - JM,N,Γ K'→ Strat - JN,M,Γ K'→ Strat - JM⊗N,Γ K'

JP⊗K {Γ} {M} {N}σ τ

rewrite J,∆K≡J∆K- [M⊗N] sΓ | J,∆K≡J∆K- (M,N,ε)Γ | J,∆K≡J∆K- (N,M,ε)Γ

= JΓ K≈- (dec1 ^-1)≈◦ distΓ-Γ^-1≈◦ (σσ& τ)

JP®K : ∀ {Γ : Ctx} {p : Pol} {A : Fml p} {N : Fml -}→
Strat p JA,N,Γ K'→ Strat p JA®N,Γ K'

JP®Kσ = σ

The above definitions are of the form

JruleK : type

JruleK args rewrite eqns = formula

To read this, one can ignore the rewrite eqns part. This is only needed for Agda to be

convinced that the formula type-checks. Each of the terms in eqns is a proof of A = B

for some A and B. The rewrite command instructs Agda to use these eqns to replace

instances of A for instances of B in the goal type, allowing the term to type-check. Thus,

to see that

distΓ-Γ^-1≈◦ (σσ& τ)

really does have type

Strat - JM&N,Γ K'

we must use the context lemmas, which occur here as proofs such as

J,∆K≡J∆K- [M&N] sΓ

It is pleasing that the formula part of these equations really looks just like the categorical

semantics of WS.

We can also give semantics to non-core rules. In the case of Pmix we use the tensor

structure on arrows, for Pcut we use composition. We can thus complete the definition of

the function

J_K` : ∀ {p} {Γ : Seq p}→`Γ→ Strat p JΓ K'

which gives the semantics of a WS proof as a total strategy on the appropriate game.



A.2.4 Full Completeness

We can also formalise the full completeness procedure for WS in Agda.

reify : ∀ {p} {Γ : Seq p}→ Strat p JΓ K'→`Γ

To do this, we show that each of the core rules are invertible, from a semantic perspec-

tive. For example,

unJPparK : ∀ {ΓPQ}→ Strat+ JPparQ,Γ K'
→ Strat+ JP,Q,Γ K'] Strat+ JQ,P,Γ K'

unJPparK {Γ} {P} {Q}σ

rewrite J,∆K≡J∆K+ [PparQ] sΓ | J,∆K≡J∆K+ (P,Q,ε)Γ | ...
= coprod $ σ ◦≈ JΓ K≈+dec1 ◦≈ distΓ+Γ

unJP⊗1K : ∀ {ΓMN}→ Strat - JM⊗N,Γ K'→ Strat - JM,N,Γ K'
unJP⊗1K {Γ} {M} {N}σ

rewrite J,∆K≡J∆K- [M⊗N] sΓ | J,∆K≡J∆K- (M,N,ε)Γ

= pi1 $ distΓ-Γ≈◦ JΓ K≈- dec1≈◦σ
unJP⊥®K : ∀ {Γ} {P} {N}→ Strat - J F⊥,P,N,Γ K'→ Strat - J F⊥,P®N,Γ K'
unJP⊥®K {Γ} {P} {N}σ

rewrite J,∆K≡J∆K- (F⊥,P,N,ε)Γ | J,∆K≡J∆K- (F⊥,P®N,ε)Γ

= JΓ K≈- (lfe' ^-1)≈◦σ
unJP&1K : ∀ {ΓMN}→ Strat - JM&N,Γ K'→ Strat - JM,Γ K'
unJP&1K {Γ} {M} {N}σ rewrite J,∆K≡J∆K- [M&N] ' Γ | J,∆K≡J∆K- [ M ]'Γ

= pi1 $ distΓ-Γ≈◦σ

The other main component of the full completeness result is the fact that reify ter-

minates. In Agda, all recursive definitions must use structural induction. If we were to

write reify above directly by induction following the definitions given in Figure 2-7, Agda

would reject it. The termination argument in Proposition 2.4.3 used a compound lexico-

graphical ordering, and so to convince Agda that reify is terminating, we must somehow

reflect this.

Termination Checking

We can use a technique introduced by Bove [15] to partition the the full completeness

procedure from its termination proof. The idea is to construct a Dom object which is

defined as an inductive data type following the structure of the proof. The full com-

pleteness procedure itself can then be defined by induction on this object in a purely

structural way. Showing that the procedure terminates is then reduced to constructing



a Dom object. We can think of Dom(σ,Γ) as an inductively defined predicate that holds

if reify terminates on arguments σ,Γ.

dataDom : ∀ {p} (Γ : Seq p)→ Setwhere

DF0 : ∀ {Γ}→Dom (F0,Γ)

DF1 : ∀ {Γ}→Dom (F1,Γ)

DF⊥ : Dom (F⊥,ε)

DF> : Dom (F>,ε)

D⊥NΓ : ∀ {Γ} {N}→Dom (F⊥,Γ)→Dom (F⊥,N,Γ)

D⊥Pε : ∀ {P} →Dom (P,ε) →Dom (F⊥,P,ε)

D⊥PQΓ : ∀ {ΓPQ}→Dom (F⊥,PparQ,Γ)→Dom (F⊥,P,Q,Γ)

D⊥PMΓ : ∀ {ΓPM}→Dom (F⊥,P®M,Γ)→Dom (F⊥,P,M,Γ)

D>PΓ : ∀ {Γ} {P}→Dom (F>,Γ)→Dom (F>,P,Γ)

D>Nε : ∀ {N} →Dom (N,ε) →Dom (F>,N,ε)

D>NQΓ : ∀ {ΓNQ}→Dom (F>,N<|Q,Γ)→Dom (F>,N,Q,Γ)

D>NMΓ : ∀ {ΓNM}→Dom (F>,N⊗M,Γ)→Dom (F>,N,M,Γ)

DM⊗NΓ : ∀ {ΓMN}→Dom (M,N,Γ)→Dom (N,M,Γ)→Dom (M⊗N,Γ)

DPparQΓ : ∀ {ΓPQ}→Dom (P,Q,Γ)→Dom (Q,P,Γ)→Dom (PparQ,Γ)

DP⊕QΓ : ∀ {ΓPQ}→Dom (P,Γ) →Dom (Q,Γ)→Dom (P⊕Q,Γ)

DM&NΓ : ∀ {ΓMN}→Dom (M,Γ)→Dom (N,Γ) →Dom (M&N,Γ)

DA®MΓ : ∀ {Γ} {p} {A : Fml p} {M}→Dom (A,M,Γ)→Dom (A®M,Γ)

DA<|PΓ : ∀ {Γ} {p} {A : Fml p} {P}→Dom (A,P,Γ)→Dom (A<| P,Γ)

reif : ∀ {p} {Γ : Seq p} (h : DomΓ)→ Strat p JΓ K'→`Γ
reif DF1 σ = P1

reif DF> σ = P>
reif (D⊥NΓ {Γ} h) σ = P⊥- $ reif h $ unJP⊥-K {Γ}σ

reif (D⊥Pε {P} h) σ = P⊥+ $ reif h $ unJP⊥+K {P}σ

reif (D⊥PQΓ {Γ} h) σ = P⊥par $ reif h $ unJP⊥parK {Γ}σ

reif (D⊥PMΓ {Γ} h)σ = P⊥® $ reif h $ unJP⊥®K {Γ}σ

reif (DM⊗NΓ {Γ} h g)σ = P⊗ (reif h $ unJP⊗1K {Γ}σ) $ reif g $ unJP⊗2K {Γ}σ

reif (DP⊕QΓ {Γ} h g)σ = [P⊕1 ◦ reif h,P⊕2 ◦ reif g] ′ (unJP⊕K {Γ}σ)

...

Note that reif is defined by structural induction on h. We next wish to generate h from

Γ. We require

allDom : ∀ {p} (Γ : Seq p)→DomΓ

and we create this using a term of type



dom : ∀ {p} {A : Fml p} {Γ n}→ size (A,Γ)6 n→Dom (A,Γ)

Here n is an element of the built-in Agda data-type of natural numbers. We define

this term by lexicographical (nested) induction. Agda accepts the outer induction as

well-founded because in each call either the Γ or the n argument structurally decreases

(the latter only occurs is if A,Γ = ⊥,P or >, N); and the inner induction because the

argument c structurally decreases (the bound on context length).

dom : ∀ {p} {A : Fml p} {Γ n}→ size (A,Γ)6 n→Dom (A,Γ)

dom {F0} le = DF0

dom {F1} le = DF1

dom {F⊥} (s6s (s6s le)) = dom⊥ re� le

where dom⊥ : ∀ cΓ n→ c≡ ctlenΓ→ csize (Γ)6 n→Dom (F⊥,Γ)

-- induction on len Γ (=c)

dom⊥ zero ε n re� le' = DF⊥
dom⊥ (suc zero) ( , {-}A ε) n' re� le' = D⊥NΓDF⊥
dom⊥ (suc zero) ( , {+}A ε) n' re� le' = D⊥Pε (dom le')

dom⊥ zero (A,Γ) n () le'

dom⊥ (suc zero) ε n' () le'

...

dom⊥ (suc (suc n)) ( , {-}MΓ) n' eq le'

= D⊥NΓ (dom⊥ (suc n)Γ n' (sucinj eq) (6lem6 (fsizeM) le'))

dom⊥ (suc (suc n)) ( , {+}P ( , {-}AΓ)) n' eq le'

= D⊥PMΓ (dom⊥ (suc n) (P®A,Γ) n' (sucinj eq) (6lem1 (fsize P) le'))

dom⊥ (suc (suc n)) ( , {+}P ( , {+}AΓ)) n' eq le'

= D⊥PQΓ (dom⊥ (suc n) (Ppar A,Γ) n' (sucinj eq) (6lem1 (fsize P) le'))

dom {F>} (s6s (s6s le)) = dom> re� le

where dom> : ∀ cΓ n→ c≡ ctlenΓ→ csize (Γ)6 n→Dom (F>,Γ)

-- induction on len Γ (=c)

dom> zero ε n re� le' = DF>
dom> (suc zero) ( , {+}A ε) n' re� le' = D>PΓDF>
dom> (suc zero) ( , {-}A ε) n' re� le' = D>Nε (dom le')

...

dom> (suc (suc n)) ( , {+}PΓ) n' eq le'

= D>PΓ (dom> (suc n)Γ n' (sucinj eq) (6lem6 (fsize P) le'))

dom> (suc (suc n)) ( , {-}N ( , {-}AΓ)) n' eq le'

= D>NMΓ (dom> (suc n) (N⊗A,Γ) n' (sucinj eq) (6lem1 (fsize N) le'))

dom> (suc (suc n)) ( , {-}N ( , {+}AΓ)) n' eq le'



= D>NQΓ (dom> (suc n) (N<|A,Γ) n' (sucinj eq) (6lem1 (fsize N) le'))

dom {A = M⊗N} le = DM⊗NΓ (dom (6lem2 (fsizeM) le)) (dom (6lem3 (fsizeM) le))

dom {A = PparQ} le = DPparQΓ (dom (6lem2 (fsize P) le)) (dom (6lem3 (fsize P) le))

dom {A = P⊕Q} le = DP⊕QΓ (dom (6lem4 (fsize P) le)) (dom (6lem5 (fsize P) le))

dom {A = M&N} le = DM&NΓ (dom (6lem4 (fsizeM) le)) (dom (6lem5 (fsizeM) le))

dom {A = A®M} le = DA®MΓ (dom (6lem2 (fsize A) le))

dom {A = A<| P} le = DA<|PΓ (dom (6lem2 (fsize A) le))

The various lemmas used here are basic facts of natural numbers needed to preserve the

bounds, e.g.

6lem4 : ∀ x {y z n}→ suc (suc (x+' y+' z))6 n→ suc (x+' z)6 n

We can resultantly define our reification function.

allDom : ∀ {p} (Γ : Seq p)→DomΓ

allDom (A,Γ) = dom (DecTotalOrder.re� decTotalOrder)

reify : ∀ {p} {Γ : Seq p}→ Strat p JΓ K'→`Γ
reify {p} {Γ} = reif (allDomΓ)

nbe : ∀ {p} {Γ : Seq p}→`Γ→`Γ
nbe p = reify J p K`

A.2.5 Cut Elimination

We can also formalise the cut elimination procedure in Agda. This is a straightforward

implementation of the definitions in Figures 2-12, 2-13, 2-10. We can use Agda as a tool

to ensure that all cases are covered and as a type checker. We define the type

data`c_ : ∀ {p}→ Seq p→ Setwhere

representing core proofs on a sequent.

mutual

cut : ∀ {p} {A : Fml p} (Γ : Ctx) {N : Fml -} {P : Fml+}→
`c A,Γ, , (N⊥',ε)→`c N,P,ε→`c A,Γ, , (P,ε)

cut {F1}Γ h g = P1

cut {F⊥} ε {N} (P⊥+y) g = P⊥+ $ unpar0 $ cut2 (N,ε) (wk {P = F0} y) g

cut {F⊥} ( , {-}NΓ') (P⊥- y) g = P⊥- (cutΓ' y g)

...

cut {y& y'}Γ (P&y0 y1) g = P& (cutΓ y0 g) (cutΓ y1 g)



cut2 : ∀ (Γ : Seq -) {QR : Fml+}→
`cΓ⊥s, ,0 (Q,ε)→`cΓ, ,0 (R,ε)→`cQ par R,ε

cut2 (F⊥,ε) (P>+P>) (P⊥+y) = Ppar2 $ wk y

cut2 (F⊥, ( , {-}NΓ')) (P>+y) (P⊥- y') = cut2 ( ,Γ') y y'

cut2 (F⊥, , {+}P ε) {Q} {R} (P><| (P>- (P<| y))) (P⊥par (P⊥+ (Ppar1 y')))

= symPpar $ cut2 (P⊥',ε) y'1 y
where y'1 = subst (λX→`c X,R,ε) (idem⊥F {P,ε}) y'

cut2 (F⊥, ( , {+}P ( , {-}MΓ'))) (P><| y) (P⊥® y') = cut2 (F⊥,P®M,Γ') y y'

cut2 (y⊗ y',y0) (Ppar1 y1) (P⊗ y2 y3) = cut2 (y,y',y0) y1 y2

...

Termination checking

Unfortunately, Agda cannot be convinced that the above definition passes the termina-

tion checker. The problem is not the fact that the induction is not structural (see Section

2.5.1). But rather, the use of subst in the definition of cut2. To explain, subst has type

A → (A = B) → B, i.e. it takes a term of type A and a proof that A = B and produces a

term of type B. This term just returns its first argument, modulo the typing coercions

afforded by its second argument. However, to the termination checker of Agda, subst is

just any arbitrary function, and so it does not see that subst(σ,eq) is “structurally the

same as” σ. This use of subst is essential, and so as far as we can see there is no easy

way to get around this problem.

Agda has an experimental feature known as sized types [1] which provides support

for annotating terms with their size (an ordinal) which can be used to solve the above

problem. However, we chose not to pursue this here, as it is a non-local solution which

involves changing types throughout the development, introducing inelegance.

A.3 A Finitary Programming Language

The above development defines Agda functions between proofs, strategies, and core

proofs. Even though we have only formalised the finitary fragment of WS, we can

nonetheless embed a version of our call-by-name total programming language inside

it. While there is no exponential operator in our formalised fragment of WS, we can de-

fine bounded exponentials as in Section 2.2.4. We can resultantly define an imperative

programming language in which the use of variables is bounded, and embed this in (our

Agda formalisation of) WS. In this language we annotate each variable with a multiplic-

ity, which bounds the number of times it may be used. There are similarities between



this system and [27], which instead places bounds on the number of concurrent threads.

We must also restrict to a finitary ground type (Booleans).

A.3.1 Types and Terms

In our finitary language, the type operator _→ _ is replaced for an operator _n → _ which

allows the argument to be called at most n times.

A context is a sequence of (variable, type, multiplicity) tuples such that each variable

occurs at most once and the multiplicity is a strictly positive number. We say Γ and ∆ are

compatible if they agree on all but the multiplicities, and let Γ+∆ add these multiplicities

together. If Γ is a context, let Γn be the result of multiplying all multiplicities in Γ by

n. An affine lambda calculus based on this notion looks as follows: Γ, x : An ` s : B can

be abstracted to Γ ` λx.s : An → B, and we can derive Γ ` x : A providing x : Am ∈ Γ for

m> 1. For application, we have the following rule:

Γ` f : An → B ∆` x : A
Γ+∆n ` f x : B

The Agda definition of this language is defined below. We omit the definition of

compatibility and related lemmas.

data FLType : Setwhere

Com [ool var : FLType

_¿_⇒_ : FLType→N→ FLType→ FLType

_(_ : FLType→ FLType→ FLType

x( y = x ¿ 1⇒ y

data FLConst : FLType→ Setwhere

ifB : FLConst ([ool( [ool( [ool( [ool)

ifC : FLConst ([ool(Com(Com(Com)

seqB : FLConst (Com( [ool( [ool)

seqC : FLConst (Com(Com(Com)

cor : ∀ nm→ FLConst ((Com¿n⇒Com)( (Com¿m⇒Com)(Com)

derf : FLConst (var( [ool)

assgn : FLConst (var( [ool(Com)

new : ∀ nA→Bool→ FLConst ((var ¿ n⇒A)(A)

nott : FLConst ([ool( [ool)

repeats : ∀ n→ FLConst (Com¿n⇒Com)

cmlem : ∀ {a b}→ compat a b→ (n : N)→ compat (mult b n) a

comb : ∀ {ΓΓ'}→ compatΓΓ'→ FLCtx



data FLTerm : FLCtx→ FLType→ Setwhere

konst : ∀ {tΓ}→ FLConst t→ FLTermΓ t

vart : ∀ {tΓ}→ (v : Var)→ isin v tΓ→ FLTermΓ t

abs : ∀ {a bΓ n}→ (v : Var)→ FLTerm ((v,a,n) ::Γ) b→ FLTermΓ (a ¿ n⇒ b)

app : ∀ {a bΓ∆ n}→ (c : compatΓ∆)→ FLTermΓ (a ¿ n⇒ b)→ FLTerm∆ a

→ FLTerm (comb (cmlem c n)) b

Remark In this finitary language, the contravariant bounds can always be inferred

from the covariant bounds. More precisely, given a program P with bound annotations

only in covariant positions, we can calculate bounds on the contravariant positions such

that the program is typeable. This can be shown using a simple induction on terms (for

the constants, note that covariant bounds are universally quantified and contravariant

bounds given). This corresponds to an assume-guarantee lemma in [27].

A.3.2 Language Embedding

We can embed this language inside WS and formalise this embedding in Agda. The key

is to use the bounded sequoidal exponentials encountered in Section 2.2.4. We represent

the type An → B as !n A (B where !0 A = 1 and !n+1 A = A®!n A.

Bounded Sequoidal Exponentials

We first show how we can model our bounded lambda calculus in WS using the bounded

sequoidal exponentials. This involves exhibiting the structure of the linear exponential

comonad — modulo the bounds — as proofs in WS.

! :N→ Fml -→ Fml -

! zeroM = F1

! (suc n)M = M® ! nM

-- Functor

⊗! : ∀ nN→` ! nN⊗N, ! (suc n)N⊥',ε
⊗! zero N = P⊗P1 (Pid® εP1)

⊗! (suc n)N = P⊗ (P® $ P⊗Tb {Γ = [N] s} $ Pid® ε $ ⊗! n N) (Pid® εPid)

prom : ∀ nMN→`M,N⊥',ε→` ! nM, (! nN)⊥',ε
prom zeroMNp = P1

prom (suc n)MNp = Pcut {Γ = [M® ! nM] s} ((N⊥')<| (! nN⊥'),ε)
(PparT {Γ = [M® ! nM] s} $ Psym {Γ = [M® ! nM] s} $ P® $

Pmix {Γ = ε} (N⊥',ε) (! nN⊥',ε) ε p $



P⊗ (P1T {Γ = [! nM] s} $ prom nMNp)P1)

(⊗! n N)

-- Dereliction

derel : ∀A→`A, ! 1A⊥',ε
derel A = P1Tb {Γ = [A] s} $ Pid® εP1
bang0 : ∀ n→` ! n F1,F0,ε

bang0 zero = P1

bang0 (suc n) = P® $ P1

-- Contraction

mutual

contr1 : ∀ nmA→` ! nA, !mA, (! (n+'m)A)⊥',ε
contr1 zeromA = P1

contr1 (suc n)mA = P® $ P⊗Tb {Γ = [A] s} $ Pid® ε $ contr nmA

contr2 : ∀ nmA→` ! mA, ! nA, (! (n+'m)A)⊥',ε
contr2 nmA rewrite+-commnm = contr1 mnA

contr : ∀ nmA→` ! nA⊗ ! mA, (! (n+'m)A)⊥',ε
contr nmA = P⊗ (contr1 nmA) (contr2 nmA)

-- Multiplication

!mult : ∀ nmA→` (! n (!mA)), [! (n *m)A⊥']
!mult zeromA = P1

!mult (suc n)mA = Pcut {Γ = [!mA® ! n (!mA)] s} (! (m+' (n *m))A⊥',ε)
(P® $ PparT {Γ = !mA, ! n (!mA),ε} $ Pmix {Γ = ε} (!mA⊥',ε)

(! (n *m)A⊥',ε) εPid (P⊗
(P1T {Γ = [! n (!mA)] s} $ !mult nmA)

P1))

(contrm (n *m)A)

-- Monoidalness

!monoidal : ∀ nMN→` ! n (M⊗N), ! nM⊥', ! nN⊥',ε
...

Translation of Constants

We next show how each of the program constants can be modelled in WS. We omit corou-

tine composition, for brevity: as with all omitted details, it can be found at [18].



Fcom = F⊥<| F>
Fbool = F⊥<| (F>⊕ F>)

Fvar = Fbool & (Fcom&Fcom)

-- Translation of program types to WS formulas

toFml : FLType→ Fml -

toFml Com = Fcom

toFml [ool = Fbool

toFml var = Fvar

toFml (y ¿ y'⇒ y0) = (toFml y0)<| ((! y' (toFml y))⊥')
-- Operations on Boolean Expressions

P⊕i : ∀ {A} {Γ}→Bool→`A,Γ→`A⊕A,Γ

P⊕i true = P⊕1

P⊕i false = P⊕2

P&i : ∀ {M} {Γ}→ (Bool→`M,Γ)→`M&M,Γ

P&i f = P& (f true) (f false)

constB : Bool→` Fbool,ε

constBm = P<| $ P⊥+ $ P⊕i m $ P>
unaryB : (Bool→Bool)→` Fbool,Fbool⊥',ε
unaryB f = P<| $ P⊥par $ P⊥+ $ Ppar2 $ P® $ P><|

$ P>- $ P<| $ P&i $ λm→P⊥+ $ P⊕i (f m) $ P>
-- Constants for Imperative Flow

seq : ∀ (P : Fml+)→` F⊥<|P,Fcom⊥', (F⊥<|P)⊥',ε
seq P = P<| $ P⊥par $ P⊥par $ P⊥+ $ Ppar1 $

Ppar2 $ P® $ P><| $ P><| $ P>- $ P<| $ P<| $

P⊥par $ P⊥+ $ Ppar2 $ P® $ P><| $ P>- $ P<| $

aux $ sym $ idem⊥f P
where aux : ∀ {Q}→Q≡ (P⊥')⊥'→`P⊥',Q,ε

aux re� = Pid

ifthen : ∀ (P : Fml+)→` \bot \lhd P,Fbool⊥',\top \oslash P⊥',\top \oslash P⊥',ε
ifthen P = P<| $ P⊥par $ P⊥par $ P⊥par $ P⊥+ $ Ppar1

$ Ppar1 $ Ppar2 $ P® $ P><| $ P><| $ P><|
$ P>- $ P<| $ P<| $ P<| $

P& (Pstr {Γ = F⊥,P,ε} aux) (Pstr {Γ = F⊥,P,F>® (P⊥'),ε} aux)

wherePid' : ∀ {P : Fml+}→`P⊥',P,ε

Pid' {P} = subst (λX→`P⊥',X,ε) (idem⊥f P) (Pid {P⊥'})



aux : ` F⊥,P,F>® (P⊥'),ε
aux = P⊥par $ P⊥+ $ Ppar2 $ P® $ P><| $ P>- $ P<| $ Pid'

repeat : ∀ n→` Fcom, (! n Fcom)⊥',ε
repeat n = P<| $ P⊥par $ P⊥+ $ repeat' n

where repeat' : ∀ n→` F> par (! n (F⊥<| F>)⊥'),ε
repeat' zero = Ppar1 $ P>+ $ P>
repeat' (suc n') = Ppar2 $ P<| $ P® $ P><| $ P><| $ P>- $ P<|

$ P<| $ Psym {Γ = F⊥,ε} $ P⊥par $ P⊥+ $

repeat' n'

-- Finitary Ground Store (of Booleans)

deref : ` Fbool,Fvar⊥',ε
deref = P⊕T1 {Γ = [Fbool] s}Pid

assign : ` Fcom,Fbool⊥',Fvar⊥',ε
assign = P⊕T2 {Γ = Fcom,Fbool⊥',ε} $ P<| $ P⊥par $

P⊥par $ P⊥+ $ Ppar1 $ Ppar2 $ P® $ P><| $ P><| $

P>- $ P<| $ P<| $ P&i $ λm→P⊥par $ P⊥+ $ Ppar2 $

P⊕i m $ P® $ P><| $ P>- $ P<| $ P⊥+ $ P>
cell : ∀ n→Bool→` ! n Fvar,ε

cell zerom = P1

cell (suc n)m = P® $ P& (P<| $ P⊥® $ P⊥+ $ P® $ P⊕i m $ P>- $ cell nm)

(P&i $ λ v→P<| $ P⊥® $ P⊥+ $ P® $ P>- $ cell n v)

Translation of Terms

We can also formalise the lambda-calculus fragment into WS, using the intuitionistic

Kleisli embedding as seen in Section 5.4.2, modified to deal with the explicit bounds on

the exponentials. This yields an Agda encoding of the map from terms to proofs.

toCtx : FLCtx→Ctx

toCtx [ ] = ε

toCtx (( ,t,n) ::Γ) = (! n (toFml t))⊥',toCtxΓ
tToPrf : ∀ {T} {Γ}→ FLTermΓT→` toFml T,toCtxΓ

Using this we can formalise the game semantics of our language.

J_Kσ : ∀ {Γ} {T}→ FLTermΓT→ Strat - J toFml T,toCtxΓ K'
J t Kσ = J tToPrf t K`



A.4 Interaction

In this section we describe a tool for running strategies interactively. The idea is that

given some strategy σ on a game A, we can ask the machine to “run” the strategy, where

the machine plays the role of Player and a human operator the role of Opponent. This

corresponds to the “strong evaluation” of [23]. We can use this tool to interact with the

game semantics of our finitary programming language.

In Figure A-1 we see an example of this, where the computer is asked to play as

Player in the winning strategy representing a three-use Boolean cell. The human play-

ing Opponent first asks to write False, then reads from the cell twice.

A.4.1 Annotated Games

Notice that the above demonstration contains more information than that of a strategy

on a simple game: in particular, at each node the user is informed of a formula that

represents the shape of the given subgame. The interaction module takes as its input

not just a strategy σ on a game A, but also an annotation on A, of the following type:

dataAnnotation (G : Game) (A : Game→ Set) : Setwhere

ν : AG→ ((i : MovG)→Annotation (G >> i)A)→Annotation GA

If A is a constant function, this reduces to

dataAnnotation (G : Game) (A : Set) : Setwhere

ν : A→ ((i : MovG)→Annotation (G >> i)A)→Annotation GA

which annotates each move of G by an element of A. We allow the annotation parameter

to be dependent on the game it is annotating: this will allow us to guarantee that when

we produce an annotated game from a given formula, the annotation at a particular node

is a syntactic representation of that node.

To formalise this, we first need a notion of semantics-annotated syntax. This is a set

of formulas parametrised by their (game) semantics.

data FML : Pol→Game→ Setwhere

F0 : FML+ I

F1 : FML - I

F> : FML+o

F⊥ : FML - o

_⊗_ : ∀ {GH} (M : FML -G) (N : FML -H)→ FML - (G⊗' H)

_par_ : ∀ {GH} (P : FML+G) (Q : FML+H)→ FML+ (G⊗' H)



Figure A-1: Running Strategies: Interaction.agda on a three-use Boolean cell

Your choice in '(one + (one + one))'

encoding (((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))
®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))

®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))® F1)))

(options are L0,RL0,RR0) (or "quit") ?
RR0
My choice in '(nil + one)'

encoding ((F0 par F>)
®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))

®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))® F1)))

is R0
Your choice in '(nil + (one + (one + one)))'

encoding ((F1<| F0)
⊗
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))

®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))® F1)))

(options are RL0,RRL0,RRR0) (or "quit") ?
RL0
My choice in '(nil + (one + one))'

encoding (((F0 par (F>⊕ F>))
®
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))® F1))

®
(F1<| F0))

is RR0
Your choice in '((nil + (one + (one + one))) + nil)'

encoding (((F1<| F0)
⊗
(((F⊥<| (F>⊕ F>))& ((F⊥<| F>)& (F⊥<| F>)))® F1))

⊗
(F1<| F0))

(options are LRL0,LRRL0,LRRR0) (or "quit") ?
LRL0
My choice in '(nil + (one + one))'

encoding ((((F0 par (F>⊕ F>))® F1)® (F1<| F0))® (F1<| F0))
is RR0

You lose, inevitably.



_&_ : ∀ {GH} (M : FML -G) (N : FML -H)→ FML - (G×' H)

_⊕_ : ∀ {GH} (P : FML+G) (Q : FML+H)→ FML+ (G×' H)

_-®_ : ∀ {GH} (M : FML -G) (N : FML -H)→ FML - (G®' H)

_+<|_ : ∀ {GH} (P : FML+G) (Q : FML+H)→ FML+ (G®' H)

_+®_ : ∀ {GH} (P : FML+G) (N : FML -H)→ FML+ (H(G)

_-<|_ : ∀ {GH} (M : FML -G) (P : FML+H)→ FML - (H(G)

PolFML : Game→ Set

PolFMLG = ΣPol (λ p→ FML pG)

We can define simple terms

toFml : ∀ {pol} {G} (A : FML pol G)→ Fml pol

toFML : ∀ {pol} (A : Fml pol)→ FML pol JA K

converting between the annotated version and the purely syntactic version. For this to

be well-defined, the annotations given in the definition of FML must coincide with the

actual semantic function. We can then define the operation

annotate' : ∀ {p} {G} (A : FML pG)→Annotation GPolFML

which constructs the semantics of A as an annotated game, with the built-in correctness

property defined above. From this we can define

forget : ∀ {G}→Annotation GPolFML→Annotation G (λ →PolFml)

forget (ν (p,' A) f) = ν (p ,' toFml A) (λ i→ forget (f i))

annotate : ∀ {p} (A : Fml p)→Annotation JA K (λ →PolFml)

annotate = forget ◦ annotate' ◦ toFML

which constructs an annotated game where nodes are annotated by formulas.

A.4.2 Running Strategies

We can define code to “run” a given strategy using the Agda bindings to Haskell and

its input-output primitives. The code for this is simple, and is given below (we omit the

machinery that deals with forcing the move in the case that the move is unique).

mutual

Ask : ∀ {GA}→ Strat - G→Annotation G (λ →A)→ (A→Doc)→ IOUnit

Ask {gam {mov} f} (neg s) (ν a g) shwith normalisemov | the-mv {mov}

... | nil | = putDocLn (text "You lose, inevitably.")



... | one | tm = putDocLn (sep (text "Your choice is forced in"

:: indent2 (sh a) :: [ ])) >>
Tell (s $ tm re�) (g $ tm re�) sh

... | | = Ask' {gam {mov} f} (neg s) (ν a g) sh

Ask' : ∀ {GA}→ Strat - G→Annotation G (λ →A)→ (A→Doc)→ IOUnit

Ask' {gam {ι} f} (neg s) (ν a g) show =
prompt (sep (text "Your choice in '"<>prMovEnc ι<> text "'" ::

indent2 (text "encoding "<>show a) ::

text "(options are "<>descMoves ι<> text ")" :: [ ]))

(PC.parseTop (pMov ι))

(λ i→Tell (s i) (g i) show)

Tell : ∀ {GA}→ (Strat+)G→Annotation G (λ →A)→ (A→Doc)→ IOUnit

Tell {gam {ι} f} (pos i s) (ν a g) show =
putDocLn (sep (text "My choice in '"<>prMovEnc ι<> text "'" ::

indent2 (text "encoding "<>show a) ::

indent2 (text "is "<>prMov ι i) :: [ ])) >>
Ask s (g i) show

An example interaction is found in Figure A-1.

A.4.3 WS-Tex

We have also included in the code base a function that produces the LATEX code for a

given proof object, which has proved useful throughout this thesis.

A.5 Towards Infinite Games

In this section we discuss how the development above can be lifted to the setting of

infinite games, representing (for example) the sequoidal exponential. Little work on this

has been done so far: but we here describe some of the basic ideas and difficulties faced.

Remark The development in this section uses Agda’s support for coinductive types. At

time of writing, this feature is experimental, with all details subject to change. The Agda

version used here is 2.2.10.

A.5.1 Infinite Games

An obvious limitation of the Agda encoding is that only finite games can be represented.

To recall, our definition of game is as follows:



dataGame : Setwhere

gam : {ι : MovEnc}→ (T ι→Game)→Game

The semantics of the data keyword in Agda is that initial algebra semantics are used:

the set Game consists of all finite trees made up out of the data constructor (which can

terminate, in this case, if T(ι) = ;). Resultantly, all elements of Game must be of finite

depth.

To consider (possibly) infinite games, we will need to use final coalgebra semantics.

The recommended style in Agda for coinductive definitions is to use a special ∞ con-

struct. The resulting definition of Game is as follows:

dataGame : Setwhere

gam : {ι : MovEnc}→ (T ι→∞Game)→Game

Here ∞ is a special Agda type operator used to mark when a recursive argument of

a data definition is coinductive. It is equipped with two operations

]_ : ∀ {A : Set}→A→∞A

[ : ∀ {A : Set}→∞A→A

Here # can be thought of as a delay constructor, and [ as a forcing operator. There are

limitations in Agda as to when this can be used to ensure termination.

mvEnc : Game→MovEnc

mvEnc (gam {a} f) = a

Mov : Game→ Set

MovG = T (mvEncG)

_�_ : (G : Game)→MovG→Game

(gam {ι} f) >> x = [ (f x)

I : Game

I = gam {nil}⊥-elim
o : Game

o = gam {one} (λ → ] I)

bangΣ : Game

bangΣ = gam {one} (λ → ] bangΣ)

Note that the final definition passes Agda’s termination checker. This is because the

recursive call is guarded — it occurs under a # delay constructor. We can define the

usual binary operations on infinite games.



_×'_ : Game→Game→Game

gam { i} f×' gam {j} g = gam { i ++ j} ([f,g])

mutual

_(_ : Game→Game→Game

G( (gam { i} f) = gam { i} (λ i'→ ] ([ (f i')⊗G))

_⊗_ : Game→Game→Game

(gam { i} f)⊗ (gam {j} g) = gam { i ++ j} h

where h : T (i ++ j)→∞Game

h (inj1 x) = ] (gam {j} g( [ (f x))

h (inj2 y) = ] (gam { i} f( [ (g y))

_®_ : Game→Game→Game

(gam { i} f)®G = gam { i} (λ i'→ ] (G( ([ (f i'))))

A.5.2 Sequoidal Exponential

We next wish to describe the sequoidal exponential on infinite games. We might wish to

write

bang : Game→Game

bangG = G® (bangG)

but this does not pass the productivity checker, as the call to bang on the right hand side

does not occur under a guard. The reason that the equation above uniquely defines bang

G is because G®_ is a guarded operation in the sense that for each m there exists an n

such that the first m moves of !G are defined by the n-fold unwrapping of the equation

G ∼=G®!G. Thus, to give the definition of !G we must massage it into such a form so that

Agda sees that the inductive call is guarded.

One way to do this is to use the method described in [24] using an embedded lan-

guage. We define a new object GameP where elements are a mix of syntax and semantics:

they may be games, or algebraic operations applied to games. The type GameH repre-

sents the elements of GameP that are in “head normal form” i.e. initial set of moves is

available, but the rest of the forest may be a GameP rather than a Game.

dataGameP : Setwhere

gam : {ι : MovEnc}→ (T ι→∞GameP)→GameP

_(P_ : GameP→GameP→GameP

_⊗P_ : GameP→GameP→GameP

dataGameH : Setwhere



gam : {ι : MovEnc}→ (T ι→∞GameP)→GameH

HtoP : GameH→GameP

HtoP (gam { i} y) = gam { i} y

GtoP : Game→GameP

GtoP (gam { i} y) = gam { i} (λ x→ ] (GtoP ([ (y x))))

We define a weak-head-normal-form operation which gives the semantics of ( and

⊗ one step at a time, extracting the initial set of moves from a given (possibly algebraic)

element of GameP.

whnf : GameP→GameH

whnf (gam { i} y) = gam { i} y

whnf (y(P y') = (whnf y)(' (whnf y')

where_('_ : GameH→GameH→GameH

G(' gam { i} y = gam { i} (λ x→ ] ([ (y x)⊗P (HtoPG)))

whnf (y⊗P y') = (whnf y)⊗' (whnf y')
where_⊗'_ : GameH→GameH→GameH

gam { i} z⊗' gam {j} y = gam { i ++ j}

[(λ zi→ ] ((gam {j} y)(P ([ (z zi)))),

(λ zi→ ] ((gam { i} z)(P ([ (y zi))))]

We can use these to pass between each of the types Game, GameP and GameH:

mutual

HtoG : GameH→Game

HtoG (gam { i} y) = gam { i} (λ x→ ] (PtoG ([ (y x))))

PtoG : GameP→Game

PtoG g = HtoG (whnf g)

Finally, this allows us to define the exponential operator in a way that satisfies Agda’s

productivity checker.

bangP : Game→GameP

bangP (gam { i} f) = gam { i} (λ x→ ] (bangP (gam { i} f)(PGtoP ([ (f x))))

bang : Game→Game

bang g = PtoG (bangP g)

In the definition of bangP, the recursive call is underneath both # and (P. Since (P

is a type constructor, the definition passes Agda’s productivity checker.



A.5.3 Continued Development

The development of infinite games in this style can be continued. A first step is to de-

fine the categorical structure. However, at the time of writing the Agda productivity

checker for coinductive definitions is young, and the fact that the recursive call in coin-

ductive definitions cannot occur under arbitrary functions but only type constructors

causes problems for readability, as even simple functions such as copairing need to be

expanded out. For example, the morphisms pasc and pasc( are defined by mutual in-

duction in our Agda development (see Section A.1.6), and use symmetry of ⊗ for brevity.

The productivity checker requires that these definitions are expanded, which increases

the number of required mutual definitions exponentially. Thus, this seems a good point

to postpone further development until support for coinduction in Agda has matured.

A.6 Further Directions

We have seen that these simple forest games are well suited to formalisation in proof

assistants. We have sketched how this can be achieved, but there is much that remains

to be done here. This includes:

• Continuing the coalgebraic treatment of infinite games

• Considering partial strategies

• Considering first-order structure, as found in Chapter 4

• Formalising proofs of properties of the categories of games — e.g. associativity of

strategy composition, sequoidal closedness, ...

• Considering other game models, e.g. Conway games.
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